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Abstract 

Major staple foods in Southern Africa are prone to mycotoxin contamination, posing health risks 

to consumers and consequent economic losses. Regional climatic zones favor the growth of one 

or more main mycotoxin producing fungi, Aspergillus, Fusarium and Penicillium. Aflatoxin 

contamination is mainly reported in maize, peanuts and their products, fumonisin contamination 

in maize and maize products and patulin in apple juice. Lack of awareness of occurrence and 

risks of mycotoxins, poor agricultural practices and undiversified diets predispose populations to 

dietary mycotoxin exposure. Due to a scarcity of reports in Southern Africa, reviews on 

mycotoxin contamination of foods in Africa have mainly focused on Central, Eastern and 
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Western Africa. However, over the last decade, a substantial number of reports of dietary 

mycotoxins in South Africa have been documented, with fewer reports documented in Botswana, 

Lesotho, Malawi, Mozambique, Zambia and Zimbabwe. Despite the reported high dietary levels 

of mycotoxins, legislation for their control is absent in most countries in the region. This review 

presents an up-to-date documentation of the epidemiology of mycotoxins in agricultural food 

commodities and discusses the implications on public health, current and recommended 

mitigation strategies, legislation, and challenges of mycotoxin research in Southern Africa. 

Keywords 

mycotoxin, aflatoxin, fumonisin, health impacts, legislation 
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1. Introduction 

Mycotoxins, which are toxic secondary fungal metabolites, contaminate various food substances 

and agricultural products worldwide, posing serious health risks to humans and animals (IARC, 

2012, 2015; DeRuyck et al., 2015). Toxicologically significant mycotoxins of concern in foods 

are aflatoxins, fumonisins, ochratoxin A (OTA), deoxynivalenol (DON) and other 

trichothecenes, and zearalenone (ZEA), produced by fungi from the genera Aspergillus, 

Fusarium and Penicillium (Shephard, 2004, 2008a; Gnonlonfin et al., 2013; Raiola et al., 2015; 

Mostrom, 2016; Udomkun et al., 2017). 

Multi-mycotoxin contamination of predominantly consumed food commodities can exert serious 

health problems in consumer populations. The toxins may be carcinogenic, mutagenic, 

teratogenic, estrogenic, neurotoxic, hepatotoxic, nephrotoxic and cytotoxic or may induce 

immunosuppression in humans (Liu and Wu, 2010; De Ruyck et al., 2015; IARC, 2012, 2015; 

Raiola et al., 2015; Mostrom, 2016). Acute mycotoxicoses have been reported in Africa and 

prolonged exposure to low amounts of various mycotoxins is a risk factor for human diseases 

including cancer and childhood stunting (Matumba et al., 2014d; Kimanya et al., 2015; IARC, 

2015). 

Aflatoxins and fumonisins are reportedly widespread in major dietary and export targeted crops 

in Southern Africa, with fewer reports of DON and patulin (PAT) contamination (Shephard et 

al., 2010; Warth et al., 2012; Probst et al., 2014; Matumba et al., 2014c; Hove et al., 2016a,b; 

Mwalwayo and Thole, 2016). Mycotoxin susceptible foods such as maize and peanuts are 

primary staples and sources of revenue in the Southern African region, while sorghum, millet, 
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wheat and cassava are also important secondary dietary crops (Ncube et al., 2011; Chiona et al., 

2014; Probst et al., 2014; Hove et al., 2016; Mwalwayo and Thole, 2016; Njoroge et al., 2016). 

Because the primary staples are also the main cash crops, the highest quality crops are often 

exported, leaving the poor quality ones for home consumption. The secondary crops are mainly 

used for home consumption, beer brewing and sale in the informal sector (Matumba et al., 

2014b, 2015a). Low income economies characterizing the region contribute to high food 

insecurity, food scarcity and undiversified diets, predisposing the population to consumption of 

mycotoxin contaminated foods (Shephard et al., 2008b; Mukanga et al., 2010; Mupunga et al., 

2014; Udomkun et al., 2017). 

Many of the agriculturally productive areas in Southern Africa have sub-tropical or tropical 

climate, typified by hot and humid conditions, which, coupled by erratic rains and frequent 

drought spells, provide an ideal environment for toxigenic fungal proliferation (Darwish et al., 

2014; Mboya and Kholanisi, 2014; Matumba et al., 2014d). Inadequate drying of crops, 

exacerbated if harvesting is early, and drought spells in the region may necessitate food storage 

for long term periods allowing for insect infestation, fungal proliferation and mycotoxin 

production (Matumba et al., 2015b). Storage facilities frequently have no pest control, poor 

aeration, poor moisture and temperature control, thus promoting aflatoxin production during 

storage. Aflatoxins may also be carried over into milk when farm animals are fed on 

contaminated feed (MacLachlan, 2011; Gnonlonfin et al., 2013; Matumba et al., 2015b). 

Although mycotoxin contamination is a major concern in many countries in Southern Africa, 

relatively few studies have been conducted on dietary mycotoxins in the region compared to 

other regions worldwide, mainly due to lack of advanced laboratory equipment, inadequate 
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research funds, capacity and expertise, and limited surveillance systems. Limited information on 

dietary mycotoxins exists outside of South Africa, while monitoring and enforcement of 

regulatory standards are rare or non-existent (Matumba et al., 2015b). Over the last decade, 

mycotoxin occurrence has been reported in maize, peanuts, barley and barley products, wheat, 

apple juice and in milk in South Africa (Katerere et al., 2007; Maenetje and Dutton, 2007; 

Shephard et al., 2010, 2013a; Kamika et al., 2014; Mboya and Kholanisi, 2014; Rheeder et al., 

2016). Limited reports, however, exist of mycotoxin occurrence in major dietary products such 

as maize, peanuts and their products in the other Southern African countries, including 

Botswana, Malawi, Mozambique, Zambia and Zimbabwe (Warth et al., 2012; Matumba et al., 

2014a, b, 2015a; Mukanga et al., 2014; Mwalwayo and Thole, 2016; Njoroge et al., 2016; 

Murashiki et al., 2017). Although mycotoxin research reports exist for foods in Botswana, 

Lesotho and Swaziland in previous decades (Siame et al., 1998; Nkwe et al., 2005; Bankole et 

al., 2006), there has been a dearth of reports in the decade under review. There is also less 

emphasis on legislating maximum levels and even when such legislation exists, the capacity to 

enforce it is frequently lacking (Matumba et al., 2015b). 

This review documents and discusses current research, highlighting the mycotoxin menace in 

Southern Africa with respect to health impacts, exposure and risk, and current and possible 

mitigation strategies, awareness, regulation and recommendations on the way forward. 

2. Dietary mycotoxins: health impacts and risks in Southern Africa 

The chronic health risks of mycotoxins are prevalent in Southern Africa because mycotoxins 

occur more frequently under tropical conditions and staple diets in the region are often 
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constituted by mycotoxin susceptible crops (Shephard 2004, 2008a, b; IARC, 2015; Matumba et 

al., 2014c, 2015b). 

Preliminary evidence suggests that there may be an interaction between chronic mycotoxin 

exposure and malnutrition, immunosuppression, impaired growth and diseases such as malaria 

and HIV/AIDS (Gong et al., 2004, 2008; Katerere et al., 2008; Khlangwiset et al., 2011; Warth 

et al., 2012; Matumba et al., 2014d; Kimanya et al., 2015). Aflatoxins may contribute to growth 

stunting during early childhood and together with other mycotoxins, are commonly suspected to 

play a role in development of edema in malnourished people as well as a causal or aggravating 

factor in the pathogenesis of kwashiorkor, a frequent condition in African children (IARC, 2015; 

Kimanya et al., 2015). 

Aflatoxin B1 (AFB1) has been extensively linked to human primary liver cancer in which it acts 

synergistically with hepatitis B virus (HBV) infection and was classified by the International 

Agency for Research on Cancer (IARC) as a human carcinogen (group 1 carcinogen) (IARC, 

2002; Shephard, 2008b; Wu et al., 2014). In high doses, aflatoxins have caused deaths from 

aflatoxicosis (Williams et al., 2004; Liu and Wu, 2010; Kimanya et al., 2015). Significant 

negative effects of aflatoxin on child growth have been reported. African studies carried out in 

Swaziland and Mozambique helped establish the link between aflatoxins, liver cancer and HBV 

infection (Van Rensburg et al., 1985). In Durban, South Africa, in 1992, cases of kwashiorkor, 

marasmus, and underweight that were reported during this period correlated with findings of 

impaired liver function. Katerere et al. (2008) reviewed available studies and data for a link 

between chronic aflatoxicosis and infant malnutrition in Southern Africa and concluded that 

there is mounting evidence implicating aflatoxin contamination as an important factor in infant 
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under-nutrition, increased morbidity and mortality due to negative impact on immune function 

and micronutrient absorption. Immune modulation effects of aflatoxins may intensify health 

impacts of major diseases troubling Africa such as malaria, kwashiorkor and HIV/AIDS 

(Matumba et al., 2014d; Gnonlonfin et al., 2013; IARC, 2015). Aflatoxin M1 is a mammalian 

hydroxylated metabolite of AFB1 excreted in urine and, importantly, in mothers’ milk, and has 

been classified as a possible human carcinogen (group 2B) (IARC, 2012; Iqbal et al., 2015). 

Fumonisins, which were discovered in South Africa in 1988 (Marasas, 1995), are a class of 

mycotoxins primarily produced by Fusarium verticillioides and F. proliferatum, but can also be 

formed by other Fusaria. Certain strains of Aspergillus niger possess the capacity to 

biosynthesize some types of fumonisins, specifically fumonisin B2 (FB2), FB4 and FB6 (Nielsen 

et al., 2009). Human exposure is reportedly highest in regions like Transkei, South Africa, where 

moldy, home-grown maize, damaged by insects, is often consumed. Occurrence on sorghum has 

also been reported (Bulder et al., 2012). The consumption of maize highly contaminated with 

fumonisins has been correlated to the high incidence of esophageal carcinoma in certain parts of 

South Africa and China (Rheeder et al., 1992; Wagacha and Muthomi, 2008; Mostrom, 2016; 

Sun et al., 2007). Accordingly, FB1, the most abundant of numerous fumonisin analogues, was 

classified by the IARC as a group 2B carcinogen (possibly carcinogenic in humans) (IARC 

2002). It is noteworthy that Malawi has the highest esophageal cancer prevalence rate (24.2 per 

100,000 people) in the world (Ferlay et al., 2013) which could be attributed to high dependence 

on maize and high fumonisin levels (Matumba et al., 2014). 

Fumonisins have also been implicated in the high incidence of neural tube defects (NTDs) in 

rural populations known to consume contaminated maize, such as the former Transkei region of 

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
] 

at
 0

7:
34

 1
1 

A
ug

us
t 2

01
7 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 8 

South Africa (Marasas et al., 2004; Shephard 2008a). In Southern Africa, where maize is a 

dietary staple and where there is chronic fumonisin exposure, NTD rates are often very high. For 

example, in South Africa, high NTD incidence has been reported in parts of rural Transkei 

(61/10 000) and in rural areas in Limpopo Province (35/10 000). In contrast, the incidence is 

much lower in urban communities such as Cape Town (1.06/10 000), Pretoria (0.99/10 000), and 

Johannesburg (1.18/10 000) (Marasas et al., 2004, IARC, 2015). 

DON, which is produced by Fusarium graminearum and Fusarium culmorum, is probably the 

most commonly detected trichothecene in cereal grains throughout the world (Mostrom, 2016). 

Consumption of DON contaminated cereals has been linked to acute gastroenteritis and emesis 

in India (Bhat et al., 1989). 

ZEA is commonly produced by various Fusarium species such as F. culmorum, F. graminearum 

and F. sporotrichioides. It is most often found in maize, yet it can also be observed in other grain 

crops such as wheat, barley, sorghum, millet, and rice (Matumba et al., 2014c; De Ruyck et al., 

2015; Mostrom, 2016). ZEA has relatively low toxicity but is a naturally occurring endocrine-

disrupting chemical and has been associated with clinical manifestations of hyper-oestrogenism 

in humans, including gynecomastia with testicular atrophy in rural males in Southern Africa 

(Shephard et al., 2008). In Southern Africa, it has been found in limited surveys conducted in 

Botswana, Lesotho, Malawi, South Africa, Swaziland and Zambia. 

PAT, a mycotoxin produced by various Aspergillus and Penicillum species, has antibiotic 

properties and damages the immune system in animals. It is generally associated with moldy 

fruits and vegetables, where it is produced by P. expansum, and has been found above regulatory 
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levels in apple juices in South Africa (Katerere et al., 2007; Shephard et al., 2010). Levels of 

patulin in apple juice are regulated at 50 ng/g in South Africa. PAT has also been reported to be 

produced by Aspergillus clavatus (Lopez-diaz and Flannigan, 1997). 

Although there is limited empirical evidence on the relationship between undernourishment and 

the consumption of mycotoxin contaminated food, studies have shown that fungi and mycotoxins 

have capacity to reduce the nutritive value of food (Wu, 2013). Although stunting cannot be 

ascribed to mycotoxin contamination alone, there is growing concern that the consumption of 

mycotoxin contaminated food is a major underlying contributing factor causing this health 

problem (Mboya and Kolanisi, 2014; Raiola et al., 2015). 

3. Mycotoxin occurrence patterns in various food commodities in Southern Africa 

3.1 Maize and maize products 

Maize is a major staple cereal in Southern Africa, commonly consumed fresh or processed into 

milled, cooked or fermented products (Matumba et al., 2009; Shephard et al., 2012; Hove et al., 

2016). Household consumption of maize in rural subsistence farming communities in South 

Africa could reach intake levels of 1--2 kg/person/day (Burger et al., 2010; Alberts et al., 2016). 

Throughout its growth, harvest, transport and storage, maize is susceptible to fungal infections 

from Fusarium and Aspergillus species and consequent contamination with their mycotoxins, 

principally fumonisins and aflatoxins (Shephard et al., 2008a; Matumba et al., 2009). 

Table 1 documents the reported occurrence of mycotoxins in maize and maize products in 

Southern Africa. Maize and maize products are reported to be frequently contaminated with 

unacceptable levels of fumonisins and aflatoxins, with FB1 and AFB1 being the most prevalent 
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(Matumba et al., 2014a, 2014b; Mngqawa et al., 2015; Alberts et al., 2016; Hove et al., 2016; 

Murashiki et al., 2016; Mwalwayo and Thole, 2016). High levels of fumonisin contamination in 

maize have been reported in several studies in Malawi, South Africa and Zimbabwe (Shephard et 

al., 2011, 2012, 2013a; Boutigny et al., 2012; Matumba et al., 2014; Hove et al., 2016a). 

Noteworthy is the maximum FB1 level of 11,624 μg/kg that was reported for maize samples from 

cultivar evaluation in localities in South Africa (Boutigny et al., 2012). In a study carried out by 

Probst et al. (2014) on maize samples in various sub-Saharan African countries, including 

Malawi, Mozambique, Zambia and Zimbabwe, all 19 maize samples from Zimbabwe were 

contaminated with greater than 10 μg/kg total fumonisins, with 53% of the samples having levels 

above 100 μg/kg. Two out of the samples with deoxynivalenol (DON) above 5μg/g originated in 

Zimbabwe while about 20% of the samples contained aflatoxin levels above 4 μg/kg. A recent 

report from Murashiki et al. (2017) showed 100% FB1 contamination in 388 samples from rural 

households in Shamva and Makoni districts of Zimbabwe, although all levels were below FDA 

(2,000 µg/kg) and EC (1,000 µg/kg) regulatory limits. Murashiki et al. (2017) reported the co-

occurrence, levels and daily intake estimates of AFB1 and FB1 in maize from rural households in 

Zimbabwe. Eighteen samples exceeded the Zimbabwe regulatory limits of 5µg/kg for AFB1 

(Siwela and Nziramasanga, 1999). No significant differences in FB1 levels between maize meal 

and maize grain samples were recorded. Humans in Zimbabwe may thus be exposed to 

unacceptable levels of aflatoxins and fumonisins. 

Total aflatoxin levels exceeding the EU limit of 4 μg/kg for maize intended for direct human 

consumption were reported in the nine samples from farmsteads and homesteads in Malawi 

while no aflatoxins were detected in the 42 samples from Mozambique (Probst et al., 2014). In a 
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survey of the incidence and level of aflatoxin contamination in a range of locally and imported 

processed foods on the Malawian retail market, no aflatoxins were detected in all samples of 

imported baby cereal, whereas all locally processed maize-based baby foods had aflatoxins 

above EU maximum level of 0.1 μg/kg for infant food. In addition, 75% locally produced maize 

puffs contained aflatoxins at levels of up to 2 µg/kg (Matumba et al., 2014b). Malwayo and 

Thole (2016) also reported as high as 140 μg/kg of aflatoxins in maize from rural households in 

Malawi. Furthermore, in a limited survey of mycotoxins in nine traditional maize-based opaque 

beers sampled from tribal rituals and commercial village brewers in Malawi, Matumba et al. 

(2014a) reported a mean aflatoxin level of 1898±1405 µg/kg which is way above the maximum 

limits for all regulatory bodies. Data obtained in the study of Matumba and co-workers (2014a) 

is useful in facilitating improved mycotoxin risk management in Malawi and possibly the 

Southern African region. 

The distribution and levels of mycotoxins in maize in the region are being influenced by climatic 

and seasonal variations. In a survey of pre-harvest maize ear rot diseases in Zambia, Mukanga 

and coworkers (2010) reported a relationship between disease incidence and climatic data such 

as rainfall, relative humidity and temperature. Thus, there’s likely to be a carryover of 

mycotoxins from pre-harvest contaminated crop to diet. Mohale et al. (2013) reported seasonal 

variation in mycotoxin levels of maize samples from Lesotho, recording FB1 levels ranging from 

7–936 µg/kg for the 2010/2011 season, which were higher than the 2009/10 season in which FB1 

levels ranged from 2–3 μg/kg. Rheeder et al. (2016) reported that drought conditions in 2003 led 

to a substantial increase in fumonisin levels in two areas in South Africa, dry sub-humid 

Centane, compared to humid sub-tropical Mbizana. The study emphasized the seasonal 

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
] 

at
 0

7:
34

 1
1 

A
ug

us
t 2

01
7 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 12 

fluctuation in fumonisin levels. The co-occurrence of toxins from Aspergillus and Fusarium 

species has also been reported in subsistence farmed maize from Zimbabwe, with higher 

mycotoxin contamination being attributed to higher rainfall and humidity regions compared to 

other regions (Hove et al., 2016a). 

There is a large commercial maize growing industry in the central agricultural area of South 

Africa, which supplies internal commercial needs except in periods of drought and consequent 

reduced yields. Crop quality data, including mycotoxin levels, on an annual basis are available 

and can be accessed on-line at www.sagl.co.za. Regular annual analyses show that Fusarium 

mycotoxins predominate and that aflatoxin contamination is absent. 

3.2 Peanuts and peanut products 

Peanuts are important dietary and cash crops in Southern Africa (Derlagen and Phiri, 2012; 

Monyo et al., 2012; Kamika et al., 2014; Mupunga et al., 2014; Matumba et al., 2015a; Njoroge 

et al., 2016). Peanut butter, a popular peanut product, is one of the cheap sources of protein, 

especially among the poor socioeconomic groups (Kamika et al., 2014; Mupunga et al., 2014) 

and is widely used in children’s food including sandwiches, porridge and vegetables. In 

Botswana and Zimbabwe, peanuts are mainly grown by small scale farmers for household 

consumption and processing (Mupunga et al., 2014). Peanuts are reportedly prone to pre- and 

post-harvest Aspergillus colonization and mycotoxin contamination (Ezekiel et al., 2012; Monyo 

et al., 2012; Udomkun et al., 2017). Aflatoxin contamination has been reported in peanut and 

peanut products in South Africa (Ncube et al., 2010; Kamika et al., 2014), Malawi (Monyo et al., 

2012, 2015; Matumba et al., 2014b; 2015a), Zimbabwe and Botswana (Mupunga et al., 2014) 

and Zambia (Njoroge et al., 2016). 
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Mycotoxin contamination of peanut and peanut products from Southern Africa is summarized in 

Table 2. Monyo (2012) reported that 8% of 1,397 samples of peanuts from farm homesteads, 

local markets, warehouses and retail shops in Malawi exceeded national regulatory limits of 20 

µg/kg. In another investigation of mycotoxin contamination of locally and imported processed 

foods from Malawian markets, total aflatoxin levels ranging from 7--500μg/kg were reported for 

93% of fresh peanuts sourced from local markets, exceeding the EU regulatory limit of 4 µg/kg. 

In comparison, aflatoxin levels with a maximum of 9.3 μg/kg were detected in 59% of fresh 

peanut samples destined for export (Matumba et al., 2014b; 2015a). In Bulawayo, Zimbabwe, 

Siwela et al. (2011) reported high levels of aflatoxin contamination exceeding 80 ng/g in raw 

peanuts and consequent aflatoxin carryover during large scale peanut butter production. More 

recently, peanuts and peanut butter samples from retail shops and informal markets in Zimbabwe 

were also analyzed, with a reported incidence of 91% total aflatoxins in 11 peanut butter samples 

and 17% total aflatoxin in 18 peanut butter samples (Mupunga et al., 2014). In the same study, 

no aflatoxins were detected in peanuts collected from retail and informal markets in Botswana. 

Ncube and co-workers (2010) reported 100% total aflatoxin contamination of peanuts, averaging 

22.66 μg/kg from subsistence farmers in South Africa, warranting public health concern. A more 

recent analysis of mycotoxin contamination of peanuts from informal markets in South Africa 

also resulted in a report of 90% contamination of the peanuts by AFB1 (Kamika et al., 2014). The 

authors encourage regular aflatoxin monitoring in peanut butter in the southern African region, 

given that a number of peanut butter samples were imported from Malawi and Zimbabwe. 
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3.3 Sorghum and Wheat 

Sorghum plays a role as a food source in Southern Africa, where it is a major ingredient in cereal 

gruels, alcoholic and non-alcoholic cereal beverages and thick porridges (Janse van Rensburg, 

2011; Matumba et al., 2011; Mupunga et al., 2014). The cereal is susceptible to colonization by a 

range of fungal species, during cultivation as well as after harvest. Mycotoxin contamination has 

been reported in sorghum and sorghum products in South Africa (Janse van Rensburg, 2011), 

Malawi (Matumba et al., 2011), Mozambique (Warth et al., 2012), Zimbabwe and Botswana 

(Mupunga et al., 2014). Table 3 shows mycotoxin contamination levels of sorghum and wheat 

samples from Southern Africa. In an analysis of samples of sorghum grain, sorghum malt and 

traditional sorghum beverages in Malawi, aflatoxins were detected at low levels, ranging from 

1.7-3.0 µg/kg in sorghum grains, whereas significantly higher aflatoxin levels were found in the 

malt prepared for beverages, ranging from 340--476 µg/kg (Matumba et al., 2011). The final 

aflatoxin content in beer samples was 22.32 µg/kg, which is much higher than the regulatory 

levels for direct human consumption as set by the EU. Malting was reported as the main point of 

mycotoxin contamination of sorghum grain. Aflatoxins have been detected in sorghum from 

commercial production areas in South Africa at below allowable limits of 5 μg/kg for AFB1 

(Janse van Rensburg, 2011). 

Wheat is a cereal of secondary importance to maize in South Africa and may probably be the 

cereal food of choice for the urban population (Mashinini and Dutton, 2006).DON levels equal to 

or below 100 μg/kg were detected in wheat flour commercial samples from South Africa 

(Shepherd et al., 2010). 
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3.4 Other foods 

3.4.1 Milk 

Another pathway for human exposure to aflatoxins is by ingestion of dairy products 

contaminated with AFM1, a mammalian metabolite of AFB1 consumed in the feed of dairy cattle 

(MacLachlan, 2011; Iqbal et al., 2015; Matumba et al., 2015b). The occurrence of AFM1 in milk 

has been documented in South Africa (Dutton et al., 2012; Mwanza and Dutton, 2014) (Table 4). 

In an analysis of milk from farmsteads in South Africa, AFM1 levels in milk up to 1.32 µg/kg 

were reported, above the national regulatory limit of 0.05 µg/l for AFM1 in milk and milk 

products (Dutton et al., 2012). Mwanza and Dutton (2014) analyzed milk from commercial and 

rural areas in South Africa and reported that higher incidences of AFM1 contamination were 

observed in commercial samples as compared to rural samples. Levels of AFM1 in milk from 

rural subsistence dairy farms and commercial dairy farms in South Africa were reported at mean 

levels of 0.15 µg/kg and 0.14 µg/kg respectively. 

3.4.2 Cassava 

Cassava tuber is a starch-rich crop, relatively new in Southern Africa and consumed mainly in 

Malawi, Mozambique, and Zambia (Tivana et al., 2005; Nyirenda et al., 2011; Chiona et al., 

2014). Tubers are processed by several methods, including sun drying and fermentation, mainly 

in order to detoxify the food due to high content of cyanogenic glycosides (Tivana et al., 2005). 

Chiona et al. (2014) investigated aflatoxin contamination in processed cassava in Malawi and 

Zambia and reported aflatoxin levels below 2.0 μg/kg in Malawian and below 4.2 μg/kg in 

Zambian samples (Table 4). No aflatoxins were detected at unacceptable levels in cassava, 
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consistent with various other reports within and beyond the Southern African region in which 

either very few cassava samples exceeded defined mycotoxin limits (Sulyok et al., 2015) or no 

aflatoxins were detected (Gnonlonfin et al., 2012). 

3.4.3 Barley 

In mycotoxin analysis of barley and barley products in South Africa by Maenetje and Dutton, 

(2007), four major mycotoxins, AFB1, DON, OTA and ZEA were detected and these persisted at 

low levels during processing from barley to beer. Concern was expressed by the authors that 

exposure may occur from these products on a regular basis. 

3.4.4 Apple juice 

In an analysis of PAT in apple juice samples from local retail markets in Cape Town, South 

Africa, Katerere and co-workers (2007) detected toxin range of <10-166 μg/kg. Higher levels of 

PAT were found in samples collected from local markets in low income areas as opposed to the 

more affluent shops, where national brands are sold. The lower quality products appeared to have 

a localized and limited distribution, and were presumably processed from cheap poor quality 

apples. Shephard et al. (2010) detected a range of <10 to 1,650 μg/kg PAT in 33% of commercial 

apple juice samples from South Africa. 

3.4.5 Edible stink bugs 

Musundire et al. (2016) reported aflatoxin contamination in edible stink bug, which is widely 

consumed in Southern Africa. Average levels were below 1 µg/kg (Table 4). An association of 

aflatoxin contamination with traditional harvesting and storage practices was reported as there 
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were no aflatoxins detected in the clean zip-lock bags used to store the edible stink bugs, in 

comparison to other storage methods. 

4. Implications of food contamination patterns 

Ample, mounting evidence shows that the rural subsistence farming communities in Southern 

Africa are at a high risk of exposure and negative health impacts of mycotoxins (IARC, 2015; 

Mostrom, 2016). Exposure to high levels of fumonisins, largely FB1, from maize consumption 

has been reported among rural subsistence farming communities in Malawi, South Africa and 

Zimbabwe (Shephard et al., 2010; 2013c; Matumba et al., 2014a,b; Hove et al., 2016a; 

Murashiki et al., 2017), with aflatoxin exposure having been reported mainly from peanuts in 

Malawi, South Africa, Zambia and Zimbabwe (Monyo et al., 2012; Kamika et al., 2014; 

Mupunga et al., 2014; Matumba et al., 2014b, 2015a; Njoroge et al., 2016). The data on 

mycotoxin occurrence patterns in this region further demonstrates that co-exposures of aflatoxins 

and fumonisins are likely to be high, especially among maize-consuming populations in this 

region (Probst et al., 2014; Hove et al., 2016b). 

Based on estimates of typical maize and peanut consumption, contamination levels and body 

weight, Liu and Wu (2010) estimated aflatoxin exposures in Mozambique (39–180 ng/kg bw per 

day), in South Africa (0–17 ng/kg bw per day) and in Zimbabwe (18–43 ng/kg bw per day), 

which were much higher than those in Western Europe and North America (0–1 ng/kg bw per 

day) (Turner et al., 2012). Aflatoxin M1 from milk of livestock consuming AFB1 contaminated 

feed is a further source of exposure that is often neglected or under-represented. Data on the 

aflatoxin carryover to human breast milk is limited, but it has been estimated at 0.1–0.4% (Zarba 

et al., 1992). Exposure of infants to AFM1 from human breast milk has been reported in 
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developing countries in Africa but not in the Southern African region (Shephard, 2004; Turner, 

2013; Magoha et al., 2014; Warth et al., 2015). Studies are therefore necessary to assess the 

exposure level of suckling babies to mycotoxins and to determine the consequences of AFM1 

ingestion from breast milk and/or from the milk of livestock in Southern Africa. 

Given the high maize consumption rates in Southern Africa, it is likely that maize consuming 

inhabitants of Southern Africa can exceed the provisional maximum tolerable daily intake 

(PMTDI) for fumonisin of 2 μg/kg bw per day set by the Joint FAO/WHO Expert Committee on 

Food Additives (JECFA) (Burger et al., 2010; IARC, 2015). A survey of maize consumption 

levels in the subsistence farming area of Centane, Transkei, South Africa showed that adults 

were consuming on average around 450 g of raw maize per day in an area with high fumonisin 

contamination (Shephard et al., 2007a, b). Resultant adult exposures were on average over 4 

times above the PMTDI and at the 90
th

 percentile of population, exposures were 7 times greater 

than PMTDI. Exposures in young children (ages 1–9 years) were found in some cases to be an 

order of magnitude greater than PMTDI. These high maize consumption levels complicate the 

establishent of regulations on maximum levels. In order to protect these populations, maximum 

levels should be low, whereas to accommodate the low maize consumption in developed 

countries, maximum levels can be allowed to be relatively high (Shephard et al., 2013c). 

Consequently, the recent setting of Codex maximum levels for raw maize and maize flour 

(including maize meal) of 4 mg/kg and 2 mg/kg, respectively, would not be health protective in 

these high maize consumption populations (FAO, 2014). Apart from fumonisin exposure via 

maize-based foods, traditional beers, frequently brewed using mouldy maize, can be an 

important route of exposure. Consumption of 1.0-6.0 L of the traditional beer from a study of 
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fumonisin exposure in Malawi translated to daily fumonisin exposure of 29--174 μg/kg bw per 

day (Matumba et al., 2014a). In a study in Malawi (Matumba et al., 2014c), estimated daily 

intakes for all maize samples from hot ecologies were well above the JECFA’s PMTDI for 

fumonisins, whereas the PMTDI of 1.0 μg/kg bw/day for DON was exceeded in relatively more 

(90%) samples from the cool highlands than the other climatic zones. 

In a preliminary exposure assessment of DON and PAT in South Africa, Shephard et al., (2010) 

reported that DON in wheat consumers contributed 6–13% of the PMTDI; 1 µg/kg body weight 

per day for DON set by JECFA. In maize meal samples, the probable daily DON intakes ranged 

from 3.67 µg/kg body weight per day in rural infants to 1.39 µg/kg body weight per day in urban 

adults, posing health risks to consumers. PAT levels in apple juice reportedly showed the 

possibility of a brief but high exposure of 37 µg/kg body weight per day (or 9,250% of the 

JECFA PMTDI of 0.4 µg/kg body weight per day) in young children (Shephard et al., 2010). 

Although PAT levels in apple juices or blends available on the South African market were found 

to be generally low, vigilance is urged to avoid the occasional sample that is heavily 

contaminated (Shephard et al., 2010). 

Due to stringent mycotoxin standards imposed in developed countries, the least contaminated 

foods in Southern Africa are destined for export, whereas highly contaminated products are 

retained for local consumption, exacerbating the high exposure levels of local populations 

(Katerere et al., 2007; Pitt et al., 2012; Matumba et al., 2015a; Njoroge et al., 2016). In a survey 

in Malawi by Matumba and co-workers (2015), it was reported that all locally made peanut 

butters unfit for human consumption and grade outs were reported to have been sold to the local 

public as food at cheaper prices. In Zambia, oil extraction is carried out from contaminated 
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peanuts for the making of cooking briquettes (Njoroge et al., 2016), posing a threat to consumers 

of the oil considering that aflatoxins have been reported in oil from several crops (Keliani et al., 

2014). 

Limited data on mycotoxin exposure and risk assessment exists for Southern Africa, primarily 

due to a lack of country-specific data on food consumption patterns, limited human resource 

capacity and technical expertise to effectively monitor and evaluate mycotoxin levels (IARC, 

2015; Matumba et al., 2015). Data on the likely human exposure to mycotoxins is challenging to 

collect due to variation in food contamination levels and intake amounts in subsistence farming 

situations, as well as the differences and variations in toxicokinetics and toxicodynamics of 

individuals in these rural communities, which may simultaneously be suffering poor overall 

nutrition. The development of sensitive biomarkers of exposure would help to alleviate some of 

these measurement problems. Although several biomarkers of exposure to aflatoxins have been 

developed, similar ones for fumonisin have been elusive (Shephard et al., 2007a). Initial 

candidates investigated included sphingoid bases in serum and urine, and FB1 in faeces and hair 

(Shephard et al., 2007b; 2013b; Van der Westhuizen et al., 2011). Urinary FB1 has been 

proposed as an exposure biomarker and has been measured in human samples in regions with 

known high exposure to dietary fumonisins in South Africa (Van der Westhuizen et al., 2011, 

2014). Generally, statistically significant relationships between the urinary level and either 

estimated or measured FB1 intakes were reported. This biomarker was used to validate an 

intervention method to reduce fumonisin exposure in a rural population in South Africa by a 

maize sorting and washing technique (Van der Westhuizen et al., 2011). In a study applying 

urinary multi-mycotoxin LC–MS/MS methods to determine multiple exposure biomarkers in the 
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Transkei region of South Africa, results confirmed that this population of subsistence farmers 

consuming home-grown maize is exposed not only to fumonisin, but simultaneously to other 

Fusarium mycotoxins but not to aflatoxins (Shephard et al., 2013a). 

5. Current and recommended mitigation strategies for mycotoxin control in Southern 

Africa 

In Southern Africa, where resources are limited and sophisticated technologies are lacking, 

culturally acceptable, simple, economically feasible, practical and sustainable methods of 

mycotoxin reduction are relevant in rural subsistence farming communities (Wagacha and 

Muthomi, 2008; Alberts et al., 2016). For example, hand-sorting and washing of maize kernels 

proved to be effective in reducing fumonisin exposure in rural subsistence farming communities 

in South Africa and in maize from local markets in Malawi (Van der Westhuizen et al., 2011; 

Matumba et al., 2015c). Recommended mitigation strategies include awareness creation, use of 

improved varieties and dietary diversity. 

5.1 Awareness creation 

Education of smallholder farmers concerning mycotoxin contamination of staples is hardly being 

implemented in Southern Africa (Mukanga et al., 2011; Mboya and Kolanisi, 2014; Matumba et 

al., 2016). Investigations in South Africa, Malawi and Zambia have shown that there is a lack of 

knowledge concerning mycotoxins and their health impacts among smallholder farmers 

(Mukanga et al., 2011; Mboya and Kolanisi, 2014; Matumba et al., 2016). Data collected from 

interviews and surveys in South Africa revealed that people used fungi-infected staples for food, 

implying that people are not fully aware of the health hazards associated with the ingestion of 
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mycotoxins (Mboya and Kolanisi, 2014). An investigation of smallholder farmers’ perceptions 

and management of maize ear rots in Central Zambia revealed that less than 7% of the farmers 

were aware of the mycotoxins produced on fungi-infected grain and farmers disposed infected 

maize ears and kernels by burning, throwing away, feeding to livestock and at times selling to 

illicit beer brewers (Mukanga et al., 2011). Another survey conducted to assess the respondents’ 

knowledge, attitudes, and practices on mold colonization of their foodstuffs and the associated 

health risks in Malawi showed that the respondents had minimal knowledge of the link between 

mold colonization and the health risk factors associated with mycotoxins such as aflatoxins 

(Matumba et al., 2015c). The lack of effective and sustained awareness and education of the 

threat of mycotoxins to human health hinders any reduction strategy (Alberts et al., 2016). 

Country or region specific knowledge enables the identification of susceptible edible crops that 

are responsible for toxin exposure in specific populations. 

Education and training to raise awareness of smallholder farmers and consumers on mycotoxins 

is critical to enable them to deliberately make efforts to find appropriate means to prevent fungal 

infections of crops (Mboya and Kolanisi, 2014; Matumba et al., 2016). Introduction of 

mycotoxin control programmes in provincial, national and regional agenda, establishing standard 

surveillance systems and promoting awareness creation will result in economic gains as well as 

health improvement in the region (WHO, 2006). The involvement of government bodies, private 

organizations, non-governmental organizations and use of national media networks such as radio 

and television programmes as well as features in newspapers and magazines will be critical to 

ensure local sustainability of mycotoxin interventions (IARC, 2015). Upgrading primary and 

secondary school curricula with courses that focus on proper food handling techniques as well as 
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basic pre- and post-harvest practices that could benefit household farming and food production 

are urgent to reduce mycotoxin exposure in the region. 

5.2 Use of Improved varieties 

Maize genotypes exhibiting some resistance to fumonisin accumulation have been identified, 

including germplasm lines adapted to South Africa (Small et al., 2011, Santiago et al., 2013). 

Transgenic Bt maize is less prone to insect damage and fumonisin accumulation compared to 

non-Bt hybrids (Abbas et al., 2013; Pray et al., 2013), but the effectiveness of Bt in reducing 

aflatoxin contamination is reportedly inconclusive (Albert et al., 2016). Results from a study 

conducted in rural areas in KwaZulu-Natal Province of South Africa, from 2004--2007 (Pray et 

al., 2013) demonstrated a clear advantage of Bt maize over conventional hybrids and traditional 

maize seeds, in which Bt maize had 40% and 16% less fumonisin than traditional maize varieties 

and non-Bt commercial maize hybrids, respectively. Field trials conducted in 2002 and 2003 at 

two locations in a commercial maize growing area of South Africa showed that the fumonisin 

levels in the Bt hybrids were generally between 39 and 83% lower than their respective non-Bt 

isolines (Rheeder et al., 2005). However, due to the higher cost of Bt hybrids, in South African 

rural areas, farmers are more likely to purchase herbicide tolerant transgenics than Bt hybrids 

(Alberts et al., 2016).Breeding for resistance to maize ear rot should aim at developing cultivars 

that also possess farmers’ preferred traits such as large grain size, taste and white flour (Mukanga 

et al., 2011). Rarely are farmers’ perceptions included in the planning phase of a breeding 

programme. Breeders tend to design programmes to meet the policies of the government for 

ensuring household food security; hence, high yield becomes the main focus, leading to the non-

adoption of new varieties (Mukanga et al., 2011). 
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5.3 Technological and community based methods to reduce mycotoxin exposure 

Traditional food processing methods form a sustainable, practical and inexpensive post-harvest 

intervention strategy to reduce mycotoxin contamination and exposure (Alberts et al., 2016). 

Hand sorting or segregation of crops prior to storage or cooking is a common practice in many 

countries in Southern Africa (Van der Westhuizen et al., 2010, 2011; Alberts et al., 2016; 

Matumba et al., 2016b). Common post-harvest practices for maize include shelling, winnowing, 

dehulling and milling (Matumba et al., 2009; Abass et al., 2014; Alberts et al., 2016).While 

commercial milling of maize is known to distribute the mycotoxins preferentially into animal 

feed products such as bran, mechanical dehulling and milling technologies are only available in 

some areas. The effectiveness of hand-sorting of maize by removing visibly infected and 

damaged kernels, resulting in a significant reduction of fumonisins has been demonstrated in 

several African countries including South Africa (Van der Westhuizen et al., 2010) and Malawi 

(Matumba et al., 2016). In South Africa, Van der Westhuizen and coworkers (2010, 2011) 

developed, implemented and validated a simple, practical and culturally acceptable hand-sorting 

and washing method for reduction of fumonisin exposure from maize. The intervention in a rural 

village reduced fumonisin levels by 84% and the reduced exposure was confirmed by urinary 

biomarker measurements (Van der Westhuizen et al., 2010, 2011).Sustainability of these 

reduction strategies is, however, dependent on the available maize supply (food security), as well 

as the socio-economic status and education of a community (Alberts et al., 2016). 

Matumba et al. (2009) reported reduced AFB1 levels of 11.7%, 29.3±5.4% and up to 80.9±5.3% 

by sun drying, dehulling and soaking of maize during maize flour production. A maximum AFB1 

reduction of 88.1±3.1% was achieved using a sequence of dehulling, soaking for 72 h and sun 
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drying the flour for 4.5 h. Through dry blanching and manual sorting, the peanut sector has been 

able to gain access to markets with very stringent aflatoxin regulatory limits (Derlagen and Phiri, 

2012). 

The fate of rejected food is however a concern, as it might still be consumed by humans in times 

of food insecurity (IARC, 2015; Alberts et al., 2016). Normally, rejected food is used either as 

animal feed or in some circumstances for the preparation of traditional maize-based beer 

(Shephard et al., 2005; Matumba et al., 2014a, b); however the residue levels in animal organs 

and tissues and carryover levels from grains to finished beverage calls for reconsideration on the 

use of highly contaminated grains for such purposes. 

In an investigation of the effect of the traditional cooking practice on fumonisin content of maize 

porridge consumed in South Africa, a mean decrease in total fumonisin levels of 11.3% was 

reported following processing of maize meal into porridge in a rural village, confirming that 

preparation of traditional porridge has only a limited effect on fumonisin exposure in the South 

African population (Shephard et al., 2012). 

5.4 Dietary diversity 

In rural Southern Africa, a high percentage of calories come from maize, which is commonly 

contaminated by aflatoxins and fumonisins (IARC, 2012). Another major source of exposure to 

aflatoxin is through the consumption of peanuts (Liu and Wu, 2010; IARC, 2012). The high 

levels of mycotoxin exposure are directly related to a lack of dietary diversity (Chen et al., 

2013). Access to a greater variety of foods and replacement of those at high risk of 

contamination will lower the risk of exposure by lessening the intake of these commonly 
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contaminated foods (Groopman et al., 2008). Increased dietary diversity is one intervention for 

which the strongest evidence of improvement of health exists (Chen et al., 2013), but which is 

also the most difficult to achieve. Challenges to implementing dietary diversity may include 

environmental factors, food insecurity, cultural traditions and economic constraints facing 

Southern Africa (Matumba et al., 2014c; IARC, 2015; Alberts et al., 2016). 

6.0 Mycotoxin legislation and regulation in Southern Africa 

In a worldwide survey of mycotoxin regulation carried out by FAO in 2003, only 15 countries in 

Africa were reported to have regulations for aflatoxins (FAO, 2004). Since the 2003 FAO report, 

there is apparently little or no improvement regarding mycotoxin regulation in Africa (Matumba 

et al., 2015b). In Southern Africa, mycotoxin regulations are either lacking or poorly enforced, 

which creates scenarios where mycotoxin exposures occur above levels set by health regulatory 

bodies (Alberts et al., 2016). The non-existence of mycotoxin legislation might be due to lack of 

prevalence data of certain toxins, capacity and resources to obtain toxicological and exposure 

data and enforce regulations (FAO, 2004; Williams et al., 2004; Wild, 2007; Wild and Gong, 

2010). 

A strategy for keeping mycotoxin levels in food low, reducing healthcare costs and accessing 

high-value markets is through the institutionalisation of mycotoxin regulations (IARC; 2015; 

Matumba et al., 2015b). Enforcement of regulatory procedures is appropriate for export crops, 

but has little relevance to the largely small scale and subsistence farmers (Matumba et al., 

2015b).The quality of food produced by commercial farmers may be easier to regulate or 

manage, as compared to that produced by the small-scale household farmers where food is 

grown in the households and consumed locally. High costs involved in inspection, sampling and 
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analyses of exports and imports of food crops, detoxification, research, training and extension 

programmes may be prohibitive to the implementation of regulatory procedures. 

Internationally, while US FDA maximum allowable limits for aflatoxins and fumonisins in 

human foods are 20 µg/kg and 4,000 µg/kg respectively (Codex, 2001), the European 

Commission has stricter guidelines, 15 µg/kg and 2,000 µg/kg for aflatoxins and fumonisins 

respectively (EC, 2006). In South Africa maximum limits for all foods are 10 µg/kg and 5 µg/kg 

for total aflatoxins and AFB1, respectively (Viljoen, 2003) and 0.05 µg/kg of AFM1 in milk and 

milk products (Mwanza and Dutton, 2014). Patulin in apple juice and apple juice-based products 

is set at a legal limit of 50µg/kg (Katerere et al., 2007). Although fumonisin research was 

pioneered in South Africa and evidence of high dietary exposures from maize were reported, 

there are no fumonisin regulations in that country (Shephard et al., 2007a; Shephard, 2013; 

Leroux, 2014; Matumba et al., 2016). Botswana and Zimbabwe have set 15 µg/kg as the 

maximum limits for aflatoxins in all food. Mozambique stated a maximum level for total 

aflatoxins with a tolerated concentration of 10 μg/kg in peanuts, peanut milk, and feedstuff 

(FAO, 2004). In the FAO survey of 2003, Malawi was reported to have an AFB1 regulation for 

peanuts of 5 μg/kg, specified for exports and had none for the local market (FAO, 2004; 

Matumba et al., 2015b). Mauritius has set maximum levels for AFB1 and total aflatoxins at 5 and 

15 µg/kg for peanuts and 5 and 10 µg/kg for all other food (FAO, 20014). No national 

regulations are currently documented in Botswana, Lesotho, Namibia, Swaziland and Zambia, 

and none of the countries in Southern Africa has regulations or guidelines for fumonisins (IARC, 

2015). 
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To be considered in formulating and implementing mycotoxin legislation in Southern Africa are 

the food security concerns of many of the people at risk, which means that even knowing that a 

food is contaminated would not help because the people have no alternative sources of food. 

Matumba et al. (2015b) argue that regulatory rules have no relevance to most people in Africa 

since their consumption of traded items is small and laboratories to test their foods are not 

available or are inaccessible. 

7.0 Challenges to mycotoxin research in Southern Africa 

Research on mycotoxins does not appear on top of the agenda in Southern Africa as the region 

prioritizes research on more pressing human health issues such as HIV/AIDS, malaria and infant 

mortality (IARC, 2015). Country specific data on occurrence and exposure to mycotoxins is 

limited in Southern Africa and the limited reported data is usually based on only a limited 

number of samples of uncertain quality especially in terms of robust sampling design. As a 

result, there is a widening gap between the quality and quantity of prevalence data generated by 

laboratories in developed countries compared with developing countries (IARC, 2015). To date, 

there have been limited efforts to compare methods from different laboratories. Quantification 

technique, sample size, replicate number and laboratory where analyses are conducted, appear to 

be important sources of variation for quantification of fumonisins (Janse van Rensburg et al., 

2011). 

Technological development of highly sensitive liquid chromatography-mass spectrometry (LC-

MS(/MS)) techniques will help support mycotoxin monitoring, though the approach may be 

limited by instrumentation costs, restricting analysis to specialist laboratories, outside Southern 

Africa. With the development of multi-toxin analytical techniques for food based on LC-MS/MS, 
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multi-biomarker methods have been developed for urinary biomeasures for toxins, including 

AFM1 and FB1 (Shephard et al., 2007a; Warth et al., 2012). While LC-MS provides robust data, 

the analytical costs are prohibitive for most laboratories. These methods have been applied in 

African foods, in collaboration with EU laboratories, to evaluate exposure (Abia et al., 2013; 

Shephard et al., 2013; Ezekiel et al., 2012, 2015; Matumba et al., 2015a,2015b). An additional 

concern is that some of the multi-mycotoxin methods, especially for foods, may be measuring 

contaminants of limited relevance to human health (IARC, 2015). 

8. Conclusions 

This review has provided a recent documentation of mycotoxin occurrence, health impacts, 

mitigation and legislation in the Southern African region, highlighting the challenges of 

mycotoxin research in the region. Due to the consumption of undiversified diets, typified by 

staple foods that are prone to fungal and mycotoxin contamination, populations in this region are 

clearly at high risk for chronic exposure to dangerous levels of mycotoxins, predominantly 

aflatoxins and fumonisins, posing serious health concerns. Mycotoxin contamination of major 

agricultural food commodities also reduces the commercial value of the crops. Creating 

awareness on the occurrence and toxic effects of mycotoxins, surveillance and introduction of 

control measures are critical initial steps towards food safety, economic sustainability and public 

health promotion in the region. Further research should be focused on the generation of data 

dealing with epidemiological, exposure and toxicity effects. 
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Table 1: Mycotoxin contamination of maize and maize products in Southern Africa 

Country Year of study Food commodity 

Source of food 

commodity 

Number of 

samples 

Mycotoxin 

type 

Positive 

samples 

(%) 

Mean 

(μg/kg) 

/*Median 

Range 

(µg/kg) Reference 

Malawi 2012 

Traditional maize 

based opaque beers 

Tribal rituals and 

commercial village 

brewers 9 AF 89 90±95 NS 

Matumba et 

al., 2014a 

  2012 

Traditional maize 

based opaque beers 

Tribal rituals and 

commercial village 

brewers 9 AF 100 1898±1405 NS 

Matumba et 

al., 2014a 

  2012 Maize puffs Retail markets 12 AF 75 *1.1 0.3-2.0 

Matumba et 

al., 2014a 

  2006-2007 Maize 

Farmsteads and 

local markets 9 AF 100 12 5-20 

Probst et al., 

2014 

  

 

  

Farmsteads and 

local markets 9 FM NS 2000 

1000-

9000 

Probst et al., 

2014 

  

 

Maize Rural households 90 AF 100 8.3±8.2 0.7-140 

Mwalwayo&

Thole, 2016 

  

 

Maize Rural households 90 FB1+FB2 NS 900±1000 

100-

7000 

Mwalwayo&

Thole, 2016 

  2008 Maize Households 108 AFB1 45.3 1.71± 3.17 NS 

Matumba et 

al., 2009 

Mozambique 2010 Maize 

Local markets, 

traders, rural 

villages 13 AFB1 46 *69.9 16-636 

Warth et al., 

2012 

  

 

    13 FB1 92 *869 

159-

7615 

Warth et al., 

2012 

  2006-2007 Maize 

Farmsteads and 

local markets 42 AF 0 0  0 

Probst et al., 

2014 

  

 

    42 FM NS 2000 

0-

10000 

Probst et al., 

2014 

Zambia 2006-2007 Maize 

Farmsteads and 

local markets 28 AF NS 7 0-108 

Probst et al., 

2014 

  

 

    28 FM NS 2000 
0- Probst et al., 
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21000 2014 

  2006 Maize Villages 114 FM 100 73300 

3700-

192000 

Mukanga et 

al., 2014 

        AF 100 5.4 0.2-10 

Mukanga et 

al., 2014 

Zimbabwe 2014 Maize meal 

Subsistence farmer 

household stores 95 FB1 95 242±236 

nd-

1106 

Hove et al., 

2016a 

  

 

    

 

FB2 31 120±0.3 nd-334   

  

 

    

 

FB3 1 57±12 nd-67   

  

 

    

 

AFB1 1 11 nd-11   

  

 

    

 

AFG1 1 4 nd-4   

  

 

    

 

AFB2 1 3 nd-3   

  

 

    

 

DON 24 217±165 nd-492   

  

 

    

 

ZEN 15 110±101 nd-369   

  

 

    

 

AME 2 60±67 nd-108   

  2006-2007 Maize 

Farmsteads and 

local markets 19 AF NS 9 0-123 

Probst et al., 

2014 

  

 

    19 FM 100 105000 

36000-

159000 

Probst et al., 

2014 

  

 

Maize  

Rural households 

Shamva 166 AFB1 22 *3.33 

0.65-

26.60 

Murashiki et 

al., 2016 

  

 

    166 FB1 100 *295.15 

10.43-

432.32 

Murashiki et 

al., 2016 

  

 

Maize  

Rural households 

Makoni 222 AFB1 20 *2.98 

0.57-

9.22 

Murashiki et 

al., 2016 

  

 

Maize   222 FB1 100 *360.18 

13.84-

606.64 

Murashiki et 

al., 2016 

South Africa 2011 Commercial maize 

Commercial 

companies 40 AFB1 33 94 0-741 

Chilaka et 

al., 2012 

  

 

Commercial maize 

Commercial 

companies 40 FB1 45 331 8-892 

Chilaka et 

al., 2012 
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Home grown maize Village households 54 FB1 100 

2083± 

3630 

56-14 

990 

Shephard et 

al., 2013a 

  2006 Maize meal Retail stores 18 DON 89 262±326 

<10-

960 

Shephard et 

al., 2010 

  

 

Maize 

Subsistence 

farmers 400 FM 15 1 

1840-

142800 

Mogensen 

et al., 2011 

  

 

    400 AF 0 0  0 

Mogensen 

et al., 2011 

  2008-2009 Maize 

Cultivar evaluation 

localities 45 FB1 62 1793 

NS-

11624 

Boutigny et 

al., 2012 

  2006-2007 Maize 

Subsistence 

farmers 261 FM NS NS 

0-

21800 

Ncube et al., 

2011 

  2011 Home grown maize 

Rural households 

Limpopo province 29 AF 21 NS 1-149 

Mngqawa et 

al., 2015 

  

 

    52 FM 92 NS 

12-

8514 

Mngqawa et 

al., 2015 

  

 

Home grown maize 

Rural households 

Mpumalanga 

province 

 

AF 

  

    

  

 

    62 FM 47 NS 

12-

2732 

Mngqawa et 

al., 2015 

  2003 Maize 

Rural villages 

Centane area 24 FM 96 NS 

nd-

8385 

Rheeder et 

al., 2016 

  2005-2006 Maize 

Homestead farms 

Cape Province 201 FM 15 NS  >1000 

Waalwijk et 

al., 2008 

  2006-2007 Maize 

Homestead 

farmsCape 

province 126 FM 12 NS  >1000 

 Waalwijk et 

al., 2008 

  2003 Good maize 

Subsistence 

farmers 7 FB 100 NS 

2.75±2.

24 

Shephard et 

al., 2011 

  

 

Mouldy maize   7 FB 100 NS 

23.4±1

2.5 

Shephard et 

al., 2011 

  

 

Good maize   7 FC 86 NS 

0.107±

0.099 

Shephard et 

al., 2011 
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Mouldy maize   7 FC 100 NS 

0.814±

0.391 

Shephard et 

al., 2011 

  

 

Maize meal Villages 10 FB 100 NS 

2130-

13268 

Shephard et 

al., 2012 

  

 

Maize porridge Villages 10 FB 100 NS 

1564-

12268 

Shephard et 

al., 2012 

Lesotho 2010-2011 Maize 

Subsistence 

farmers 40 FB1 NS NS 7–936  

Mohale et 

al., 2013 

  2010-2011 Maize 

Subsistence 

farmers 40 AFB1 NS NS 

nd-

3500 

Mohale et 

al., 2013 

Key 

 

    

 

  

  

    

nd: not 

detected 

 

FC: Total Fumonisin 

C   

 

  

  

    

NS: Not 

stated 

 

    

 

  

  

    

AF: Total 

Aflatoxin 

 

    

 

  

  

    

FM: Total 

Fumonisin 

 

    

 

  

  

    

FB: Total 

Fumonisin B 
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Table 2: Mycotoxin contamination of peanut and peanut products in Southern Africa 

Country Year of study 

Food 

commodity 

Source of 

food 

commodity 

Number 

of 

samples 

Mycotox

in type 

Positive 

samples 

(%) 

Mean/* 

Median(µ

g/kg) 

Range 

(µg/kg) Reference 

Malawi 2012-2013 Fresh peanuts Local markets 69 AF 93 122.3 7-500 

Matumba  

et al., 2014b; 2015a 

  

 

Fresh peanuts 

Mycotoxin Lab 

Export 

samples 27 AF 59 2.6 NS-9.3 

Matumba  

et al., 2014b;2015a 

  

 

Locally 

processed 

peanut butter 

Local 

supermarkets 14 AF 100 *72 34.3-115.6 

Matumba 

 et al., 2014b;2015a 

  

 

Imported 

peanut butter 

Local 

supermarkets 11 AF 73 *0.7 2.7-4.3 

Matumba 

 et al., 2014b;2015a 

  2012 

Unskinned 

roasted 

peanuts Local markets 9 AF 56 *0.5 0.5-2.5 

Matumba  

et al., 2014b 

  

 

Deskinned 

roasted 

peanuts Local markets 15 AF 73 *8.2 0.6-36.9 

Matumba  

et al., 2014b 

  

 

Peanut based 

therapeutic 

foods 

Local 

supermarkets 6 AF 100 *2.1 1.6-2.9 

Matumba  

et al., 2014b 

  2009 Peanuts 

Farm 

homesteads, 

local markets 1397 AFB1 46 >4 NS Monyo et al., 2012 

  

 

  

Warehouses, 

retail shops 

 

AFB1 21 >20 NS Monyo et al., 2012 

Zambia 2012 Peanut butter Retail outlets 11 AFB1 73 >20 NS-130 Njoroge et al., 2016 

  2013 Peanut butter Retail outlets 15 AFB1 80 >20 NS-10000 Njoroge et al., 2016 

  2014 Peanut butter Retail outlets 19 AFB1 53 >20 NS-1000 Njoroge et al., 2016 

Zimbabw

 

Peanuts Retail outlets 

and informal 
18 AF 17 

 

6.6-622 Mupunga 

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
] 

at
 0

7:
34

 1
1 

A
ug

us
t 2

01
7 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 54 

e markets  et al., 2014 

  

 

Peanut butter 

Retail outlets 

and informal 

markets 11 AF 91 75.66 NS 

Mupunga  

et al., 2014 

  

 

    

  

0 

 

6.1-247 

Mupunga 

 et al., 2014 

Botswan

a 

 

Peanuts 

Retail outlets 

and informal 

markets 16 AF 

   

  

South 

Africa 2011 Peanuts 

Informal 

markets 20 AFB1 90 NS 0-35.39 Kamika et al., 2014 

  

 

Peanuts   1189 AFB1 

 

NS 0-3871 Icrisat, 2010 

  2007 Peanuts 

Subsistence 

farmers 18 AF 100 22.66 

0.26-

131.03 Ncube et al., 2010 

Mozamb

ique   Peanuts 

Local markets, 

traders, rural 

villages 23 AFB1 14 NS 3.4-123 Warth et al., 2012 

Key 

 

    

 

  

  

    

nd: not 

detected  

FC: Total 

Fumonisin C            

NS: Not 

stated               

AF: Total 

Aflatoxin               

FM: 

Total 

Fumonisi

n               

FB: Total 

Fumonisi

n B                
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Table 3: Mycotoxin contamination of sorghum, wheat and their products in Southern Africa 

Country 

Year of 

study 

Food 

commodity 

Source of 

food 

commodity 

Number 

of 

samples 

Mycotoxin 

type 

Positive 

samples 

(%) 

Mean/* 

Median 

Range 

(µg/Kg)) Reference 

Botswana 2011 Sorghum 

Retail 

markets/Far

msteads 16 AF 0  0 0  

Mupunga  

et al., 2014 

Zimbabwe 2011 Sorghum 

Informal 

markets 18 AF 0  0  0 

Mupunga  

et al., 2014 

        18 FM 61 NS  8-187 

Mupunga 

 et al., 2014 

Malawi 2009 

Traditional 

sorghum beer 

Rural 

households 5 AF 100 22.3 ±4.93  NS 

Matumba  

et al., 2011 

    

Non alcoholic 

beverage 

(Tobwa) 

Rural 

households 7 AF 43 4.50 ±1.45  NS 

Matumba  

et al., 2011 

    Sorghum 

Rural 

households 13 AF 15 2.35 ±0.65  NS 

Matumba  

et al., 2011 

    Sorghum malt 

Rural 

households 6 AF 100 

*17.57 

±7.52  NS 

Matumba  

et al., 2011 

  2009 

Sorghum malt 

beer 

Rural 

households 21 AF 100 

408.45±67.

97 

4.3-

1138.8 

Matumba  

et al., 2011 

South Africa 

2007-

2009 Sorghum 

Commercial 

production 

areas  NS AF  NS NS  0.01-2.53 

Janse van 

Rensburg, 2011 

  2006 Wheat flour 

Retail 

outlets 23 DON 52 19±22 

<10 to 

100  

 Shephard  

et al., 2010 

Key 
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FC: Total 
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NS: Not 

stated 

 

    

 

  

  

    

AF: Total 

Aflatoxin 

 

    

 

  

  

    

FM: Total 

Fumonisin 

 

    

 

  

  

    

FB: Total 

Fumonisin B 
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Table 4: Mycotoxin contamination of other food commodities in Southern Africa 

Country 

Year of 

study 

Food 

commodity 

Source of food 

commodity 

Number 

of 

samples 

Mycotoxin 

type 

Positive 

samples 

(%) 

Mean/*

Median 

Range 

(µg/Kg)) Reference 

South Africa   Cow milk Farmsteads 42 AFM1 10 0.12 0.04-1.32 Dutton et al., 2010 

  NS Apple juice Retail outlets 8 Patulin 63 NS <10-75.2 Katerere et al., 2007 

  2006   Apple juice  Retail outlets  30  Patulin 33  73±300 

<10 to 

1,650  

 Shephard et al., 

2010 

  

2010-

2011 Raw milk 

Rural subsistence 

dairy farms 125 AFM1 78 0.15 NS 

Mwanza and 

Dutton, 2014 

    Raw milk 

Commercial dairy 

farms 100 AFM1 85 0.14 NS 

Mwanza and 

Dutton, 2014 

Zimbabw

e 2014 

Edible stink 

bugs 

(unprocessed) Forests 2.5 Kg AFB1 NS 

0.50±0.1

7 NS 

Musundire et al., 

2016 

    

Edible stink 

bugs 

(processed) Forests 2.5Kg AFB1 NS 

0.59±0.1

8 NS 

Musundire et al., 

2016 

Malawi 

2008-

2009 

Processed 

cassava 

products   88 AF 2 NS NS Chiona et al., 2014 

Zambia 2009 

Dried cassava 

chips and flour   22 AF 9.1 NS NS Chiona et al., 2014 

Key 
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FB: Total 

Fumonisi

n B 
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