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1. Introduction

Barley is the fourth most produced cereal crop worldwide, 
and grown in temperate climate regions including North-
West Europe and Canada. Around 140 million tonnes per 
year are produced globally, which are mainly used as feed 
(70%) and for beer production (27%) (FAO, 2004, 2016).

Infection with Fusarium, a fungus, can lead to the crop 
disease Fusarium Head Blight (FHB) and Fusarium 
damaged kernels (FDK), resulting in reduced yield, quality 
of the kernels and the percentage of seed germination 
(Tekauz et al., 2000). In addition, the presence of Fusarium 
spp. in barley kernels is related to gushing (Sarlin et al., 
2005), the eruptive overfoaming of beer upon opening 
(Christian et al., 2011).

Some Fusarium species produce mycotoxins, secondary 
metabolites that can cause adverse health effects in humans 
and animals upon consumption (Placinta et al., 1999). 
Fusarium mycotoxins include type A trichothecenes, 
such as T-2 toxin (T-2) and HT-2 toxin (HT-2), and 
type B trichothecenes, such as deoxynivalenol (DON). 
T-2/HT-2 toxins are the most potent trichothecenes and 
exert immunotoxic, genotoxic and neurotoxic effects (EFSA, 
2011). DON is the most studied Fusarium mycotoxin in 
small-grain cereals. It can cause acute and chronic adverse 
effects on the gastro-intestinal tract, the nervous system, 
and the immune system in animals and humans (Maresca, 
2013). Mycotoxins are chemically stable contaminants; they 
survive many processing steps and are found in multiple 
end-products, like flour, feed and beer (EFSA, 2013; Varga 
et al., 2013). Human chronic dietary exposure to T-2/HT-2 
(EFSA, 2017a) and DON (EFSA, 2017b) may exceed their 
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Barley is a small-grain cereal that can be infected by Fusarium spp. resulting in reduced quality and safety of harvested 
barley (products). Barley and other small-grain cereals are commonly studied together for Fusarium infection 
and related mycotoxin contamination, since the infection and its influencing factors are assumed to be the same 
for all small-grain cereals. Using relevant literature, this study reviewed Fusarium spp. infection and mycotoxin 
contamination, mainly T-2/HT-2 toxin and deoxynivalenol (DON), in barley specifically. For the first time, review 
results provide an extensive overview of the influencing factors for Fusarium infection and mycotoxin production 
in barley, such as weather, agricultural management and processing factors, and includes the comparison of these 
mechanisms in wheat. Results showed that Fusarium infection in barley is difficult to recognise in the field and 
mycotoxin levels cannot be estimated based on the symptoms. These factors make it difficult to establish the real 
severity of Fusarium infection in barley. In addition, most pre-harvest measures to mitigate initial Fusarium infection, 
such as cultivar use and soil cultivation, are the same for barley and wheat, but due to anatomical differences, some 
pre-harvest measures have a different effect on Fusarium infection in barley. For example, the effective moment 
(days after anthesis) of fungicide application in barley and wheat is different. Also, in wheat, there is an additional 
effect of multiple fungicide applications in reducing Fusarium Head Blight and DON concentrations, whereas in 
barley, no additional effect of multiple application is seen. Hence, care should be taken to use data from one small-
grain cereal to draw conclusions on other small-grain cereals.
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respective tolerable daily intakes in some sub-populations, 
in particular young population groups.

The rate of infection and production of mycotoxins by 
Fusarium spp. in small-grain cereals can be influenced by 
pre-harvest agronomic measures and other factors, like 
weather and post-harvest processing (EC, 2006c). Although 
some review papers on infection and these influence factors 
are available for wheat or small-grain cereals in general (Bai 
and Shaner, 2004; Dweba et al., 2017; Kabak et al., 2006; 
Kazan et al., 2012; Liu and Ogbonnaya, 2015; Parry et al., 
1995; Van der Fels-Klerx and Stratakou, 2010; Wegulo, 
2012; Wegulo et al., 2015), no complete overview exists for 
barley. In addition, several cited reviews draw conclusions 
for small-grain cereals based on wheat data. It is generally 
assumed that Fusarium infection and the effect of influence 
factors on this infection and mycotoxin formation are the 
same for all small-grain cereals. This literature study aimed 
to investigate Fusarium infection, its related trichothecene 
contamination (T-2/HT-2 and DON) and the effect of 
influence factors, like weather, agronomic management 
and processing in barley specifically, and identify possible 
differences and similarities with wheat.

2. Material and methods

An extensive literature review was conducted including 
scientific papers published up to July 2017. The keywords 
(Fusarium OR FHB OR mycotoxins OR trichothecenes 
OR deoxynivalenol OR T-2 OR HT-2) AND (barley OR 
small-grain cereals) AND (management OR measures) 
were used to search SCOPUS and PubMed.

The search results were screened for their relevance to the 
study objectives based on their titles and abstracts. Papers of 
the relevant records were retrieved, and checked based on 
their full contents. The reference lists of all relevant studies 
were checked for additional relevant papers (snowballing 
effect) of which the abstracts were again checked for their 
relevance to the study objectives.

3. Results

Anatomy of barley

Barley (Hordeum vulgare L.) belongs to the family of grasses 
and has anatomical similarities and differences with other 
small-grain cereals, such as wheat. Due to anatomical 
differences the susceptibility between small-grain cereal 
types can differ (see next section on Infection).

In small-grain cereal plants, the grain kernels develop in 
the spike, also called head or ear. This spike consists of 
multiple spikelets that are connected by a node on the 
rachis, the main stem. A spikelet consists of one or more 
florets that can develop to kernels, the actual edible grains. 

The arrangement of the florets differs between barley types. 
In barley, three spikelets are connected on a rachis node on 
alternating sites of the rachis, and each spikelet contains 
one floret. In six-rowed barley, all three florets are fertile 
and will develop into kernels. In two-rowed barley, only the 
middle floret will develop into a kernel (Forster et al., 2007). 
When viewed from above, six-rowed barley has a ring of six 
kernels around the rachis whereas two-rowed barley has two 
kernels on opposite sides of the rachis. During the flowering 
stage (anthesis) of the plant, anthers extrude from the floret. 
Barley can be either chasmogamous (open-flowering) or 
cleistogamous (closed-flowering). Chasmogamous barley 
has full anther extension whereas cleistogamous barley has 
no or a limited anther extension (Heta and Hiura, 1963; 
Vivar et al., 1997). In closed-flowering barley, only self-
fertilisation occurs (Briggs, 1978).

Infection

Fusarium spores can survive in the soil, crop residues or 
grain seeds, and reach the spike via wind or water from 
rain or irrigation (Osborne and Stein, 2007; Parry et 
al., 1995). During warm and wet conditions the spores 
germinate and the fungus infects the plant. Mesterházy 
(1995) summarized the five types of plant resistance to 
Fusarium infection: (1) resistance to initial infection; (2) 
resistance to spread of pathogen; (3) resistance to kernel 
infection; (4) tolerance; and (5) resistance to toxins (Miller 
et al., 1985; Schroeder and Christensen, 1963; Snijders, 
1988). Both type 1 and 2 resistance are found in barley, 
with type 2 as the predominant type (Bai and Shaner, 2004).

The fungus can penetrate the rachis and spreads via direct 
floret-floret contamination. Further contamination via 
direct floret-floret contact occurs mainly in six-rowed 
barley, because the florets are closer together compared 
to two-rowed barley (Langevin et al., 2004). In barley, it is 
possible that only three florets in a spikelet are infected, 
whereas the neighbouring spikelets are free from infection 
(Tekauz et al., 2000). Infection is sometimes restricted to 
these initially infected florets and does not spread to the 
adjacent florets (Boddu et al., 2007). Chasmogamous barley 
is most susceptible to Fusarium infection during anthesis 
(Oliveira et al., 2012; Yoshida et al., 2007, 2012), possibly 
due to production of fungal growth stimulants (Strange 
and Smith, 1971), whereas cleistogamous barley is most 
susceptible ten days after anthesis (Yoshida et al., 2007). 
Although anthesis mainly occurs while the head is still 
protected from infection (McCallum and Tekauz, 2002), 
it is observed that barley heads can extrude already fully 
infected (Osborne and Stein, 2007).
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Symptoms

Fusarium infection can be determined in different ways. 
On the field, FHB can be determined by visual inspection 
of the percentage of infected florets (Yoshida et al., 2007), 
percentage of infected spikelets (Ban and Suenaga, 2000; 
Bérubé et al., 2012; Buerstmayr et al., 2004; Chrpová et 
al., 2011; Nesvadba et al., 2006; Xue et al., 2006), and 
percentage of infected kernels in a spikelet (Urrea et al., 
2002) or ear (Vančo et al., 2007). These percentages can 
be used to determine an FHB index (% incidence * % 
severity) (Tekauz et al., 2000). After harvest, FHB can be 
determined by the percentage of FDK as described by the 
visual symptom score of the kernels, the presence of fungi 
or the weight of the kernels.

In infected barley, symptoms are not distinctive, can be 
hidden, or may be confused with other diseases. Infected 
barley can be recognised by necrotic patches and bleaching 
of the florets (Boddu et al., 2007) and discoloured kernels 
(tan, orange, brown, pink or red) scattered throughout 
the head. When the bottom of the head is infected, 
the stem may turn dark brown (Tekauz et al., 2000). 
Sometimes, fungal mycelium, (orange-pink) spore masses 
or black spots are visible on the kernels (Canadian Grain 
Commission, 2016). A pink-red colour of the kernels can 
be caused by production of naphthoquinone pigments by 
Fusarium species (Oliveira et al., 2012). Under extreme 
stressful conditions for the fungus, it can biosynthesise 
these pigments (Medentsev et al., 2005). In addition to 
discoloration of the barley kernels, FDK can also decrease 
in weight by 20% compared to healthy kernels (Tekauz et al., 
2000). In hulled barley, FDK cannot be distinguished from 
healthy kernels, because the hull can conceal the damage 
(Abramson et al., 2004). In addition, symptoms can be 
confused with those caused by other pathogens (Bérubé et 
al., 2012); for example, discoloration at the basal end of the 
kernel can also be caused by Helminthosporium sativum 
and Alternaria alternata (Clear et al., 1996). Overall, these 
factors make it difficult to establish the real severity of 
Fusarium infection in barley.

Mycotoxins

Most Fusarium species are able to produce mycotoxins. It 
is suggested that these toxins may act as virulence factors 
and increase the aggressiveness of the fungus in small-grain 
cereals (Bai and Shaner, 2004; Jansen et al., 2005; Langevin 
et al., 2004). Boddu et al. (2007) showed that a Fusarium 
strain that produces trichothecenes (DON) and a non-
trichothecene producing mutant strain, were both able 
to infect barley florets without spreading to neighbouring 
florets. However, the non-trichothecene producing strain 
resulted in lower disease severity based on the percentage 
of diseased florets and smaller necrotic patches, less 
bleaching and lower amount of biomass as compared to 

the trichothecene producing strain. These results indicate 
that trichothecene (DON) production is a factor in the 
pathogenicity and severity of Fusarium infection in barley. 
However, Langevin et al. (2004) only found differences in 
pathogenicity of a non- and trichothecene producing strain 
(DON) in one of the four barley cultivars studied. Jansen 
et al. (2005) showed that spreading was inhibited by the 
plant regardless of the presence of DON.

Fusarium infection can activate the plant defence system 
(Hofer et al., 2016b) and mycotoxins might play a role 
in this activation. When DON was applied to one barley 
floret, it spread to other florets, diluting its concentration 
(Gardiner et al., 2010). Upon infection with a trichothecene 
producing strain, transcription of plant defence genes 
increased compared to infection with a non-trichothecene 
producing strain. One of the plant defence mechanisms is 
detoxification by glucosylation. Glucosylation of mycotoxins 
by the plant is thought to be the mechanism behind the 
presence of so called ‘masked’ or ‘modified’ mycotoxins. 
The masked mycotoxin deoxynivalenol-3-glucoside (DON-
3G), a plant conjugate of DON, was found when barley 
was inoculated with DON (Gardiner et al., 2010; Meng-
Reiterer et al., 2015). Also, conjugated forms of T-2 and 
HT-2 were found in barley (Meng-Reiterer et al., 2015). 
In end-products, high concentrations of DON-3G were 
found in beer (Varga et al., 2013; Zachariasova et al., 2012).

In Europe between 15 and 55% of the barley (products) is 
contaminated with DON (EFSA, 2017b) and between 2 
and 50% with T-2/HT-2 (EFSA, 2011; 2017a). Mean DON 
concentrations are around 484 µg/kg in unprocessed 
barley, 152 µg/kg in barley grains for human consumption, 
8.4-11.3 µg/kg in beer, and 187 µg/kg in feed (EFSA, 2013, 
2017b; Varga et al., 2013). Mean T-2/HT-2 concentrations 
are between 22.8 µg/kg in unprocessed barley, 10-13 µg/
kg in barley for human consumption and 0.82-3.3 μg/l 
in beer (EFSA, 2011, 2017a). In the EU, Commission 
Regulation 2006/1881/EC sets maximum levels for DON 
at 1,250 µg/kg in unprocessed cereals and 200-750 µg/
kg in cereal (products) for direct human consumption 
(EC, 2006a). Commission Recommendations state 
maximum levels for DON is 8 mg/kg in cereals and cereal 
products intended for animal feed (2006/576/EC; EC, 
2006b) and maximum levels of T-2/HT-2 at 250-500 µg/
kg in barley products for feed and compound feed, 200 µg/
kg in processed barley (including malting barley), 50 µg/kg 
in barley for direct human consumption and 15-100 µg/kg 
in barley products for human consumption (2013/165/EU; 
EC, 2013). Regarding exposure to mycotoxins due to barley 
consumption, barley is a minor contributor to dietary T-2/
HT-2 exposure, and its contribution is mainly due to beer 
consumption by adults (EFSA, 2011, 2017a). In contrast, 
barley is not a high contributor to DON exposure (EFSA, 
2013, 2017b).
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Correlation between symptoms of Fusarium infection and 
mycotoxins

For barley, results for the correlation between disease 
severity, mycotoxin levels and other symptoms are not 
consistent. In some studies, a correlation was found 
between disease severity and the presence of Fusarium 
species (Salas et al., 1999), visually infected kernels (Berger 
et al., 2014; Legzdina and Buerstmayr, 2004), or a reduction 
in grain weight (Fernandez et al., 2007a). However, other 
studies could not find such a correlation between disease 
severity and presence of Fusarium species (Nesvadba et 
al., 2006; Tekauz et al., 2000) or visually infected kernels 
(Tekauz et al., 2000). In some studies, presence of DON 
was correlated to the disease severity (Berger et al., 2014; 
Buerstmayr et al., 2004; Chrpová et al., 2011; Legzdina 
and Buerstmayr, 2004; Salas et al., 1999; Thin et al., 2004), 
visually infected kernels (Berger et al., 2014; Legzdina and 
Buerstmayr, 2004), a decrease in kernel weight (Chrpová et 
al., 2011) or presence of Fusarium species (Bérubé et al., 
2012; Salas et al., 1999; Schöneberg et al., 2016; Tekauz 
et al., 2000). However, in other studies, no correlation 
between presence of DON and disease severity (Nesvadba 
et al., 2006), visually infected kernels (Tekauz et al., 2000), 
a decrease in kernel weight (Tekauz et al., 2000) or presence 
of Fusarium species (Abramson et al., 1998; Xue et al., 
2006) was found. In addition, no significant correlation 
was found between the presence of Fusarium avenaceum, 
Fusarium equiseti, Fusarium graminearum, Fusarium poae, 
or Fusarium sporotrichioides, and DON content in barley 
(Abramson et al., 1998; Xue, 2013; Xue et al., 2006).

4. �Influence factors on Fusarium infection and 
mycotoxin levels

Weather

Weather is one of the most influencing factors on Fusarium 
infection and the production of mycotoxins in barley 
(Berger et al., 2014; Bernhoft et al., 2012; Bondalapati 
et al., 2012; Linkmeyer et al., 2016). Weather conditions 
determine germination, growth of fungi and selection of 
species (Doohan et al., 2003). Germination of the fungus 
normally occurs with warm and moist weather, depending 
on the type of Fusarium species. Presence of these species 
differ per region and climate conditions. For example, 
F. graminearum is the predominant Fusarium species 
in warmer regions, whereas in cooler regions Fusarium 
culmorum and F. avenaceum are predominant (Champeil 
et al., 2004). Since not all Fusarium species produce the 
same mycotoxins, the type of mycotoxin present is also 
climate and weather dependent.

Based on a model with barley samples from North-West 
Europe collected between 1989-2009, presence of DON 
in barley was positively correlated with temperature and 

precipitation in April, probably around ear formation (Van 
der Fels-Klerx et al., 2012). Also, T-2/HT-2 production by 
F. sporotrichioides was associated with wet field conditions 
in summer, probably during ripening, in Canada in 1993 
(Abramson et al., 2004). In the Czech Republic, a high 
incidence of T-2/HT-2 was associated with relatively low 
mean temperatures in May and July in 2008 during barley 
anthesis, which are conditions favourable mainly for type 
A trichothecene producers such as F. sporotrichioides and 
F. poae (Malachova et al., 2010).

Barley variety

Choosing a resistant barley cultivar can be effective to 
mitigate Fusarium infection and mycotoxin accumulation. 
Barley cultivars have different susceptibility to Fusarium 
infection and mycotoxin accumulation (Bérubé et al., 2012; 
Chrpová et al., 2011; Langevin et al., 2004; Xue, 2013; Xue 
et al., 2006). Susceptible characteristics include six-rowed 
barley, and open-flowering types and hulled varieties.

A Japanese study with forty-six cultivars, observed higher 
FHB severity in chasmogamous and six-rowed barley 
compared to cleistogamous and two-rowed barley from 
2001 to 2002 (Yoshida et al., 2005). Also, the number of 
infected spikelets was higher in wheat than in six-rowed 
barley (Langevin et al., 2004).

The presence of a hull is another characteristic determining 
a difference in susceptibility. Most barley cultivars have a 
hard inedible hull around the kernel (hulled or covered 
barley), but in some cultivars this hull is loosely attached 
(hulless barley) and generally falls off during harvest. In 
the edible parts of both hulled and hulless Korean barley, 
the highest total mycotoxin content was found in the 
bran (Hong et al., 2014). Although hulled and hulless 
barley did not differ in FHB incidence in 18 cultivars in 
Northern America and 174 cultivars in Austria (Berger et 
al., 2014; Legzdina and Buerstmayr, 2004), the presence 
of a hull might be related to the extent of trichothecene 
contamination in barley. DON, 3-acetyldeoxynivalenol 
and 15-acetyldeoxynivalenol concentrations were higher in 
hulled barley compared to the hulless variant (Legzdina and 
Buerstmayr, 2004), whereas T-2/HT-2 can be up to twice 
as high in hulless compared to hulled cultivars based on 
data from the Czech Republic in 2005 (Malachova et al., 
2010); however, not all studies could find a difference for 
DON (Berger et al., 2014).

Sowing date

Barley can be sown in spring (spring barley) or the previous 
autumn/winter (winter barley), and harvested in summer 
or autumn. Winter barley cultivars need vernalisation 
and spring barley cultivars are not always resistant to 
frost. Spring and winter barley differ in sowing time 
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and susceptibility to Fusarium infection. In 2010, the 
predominant Fusarium species was F. graminearum in 
winter barley (cv. Campanile and Fridericus) and Fusarium 
langsethiae in spring barley (cv. Quench) from Germany 
(Linkmeyer et al., 2016). In Switzerland, F. graminearum 
incidence and DON content were higher in winter barley 
(fodder) compared to spring barley (malting) from 2013 
and 2014 (Schöneberg et al., 2016). In France, DON levels 
in malting barley were lower in spring barley compared to 
winter barley in 2006, but higher in 2007 and 2008 (Orlando 
et al., 2010). T-2/HT-2 levels in France were higher in spring 
barley compared to winter barley from 2006-2008 (Fournier, 
2009). Another French study reported higher levels of T-2/
HT-2 in winter barley from 2006-2007 (Barrier-Guillot, 
2008). The levels of T-2/HT-2 in spring barley were reported 
to be up to four times higher than those in winter barley 
in France between 2006 and 2008 (Orlando et al., 2010). 
A study on European malting barley showed no difference 
between T-2/HT-2 levels in 2007, but reported higher T-2/
HT-2 in spring barley compared to winter barley in 2008 
(Slaiding, 2008, 2009). In addition, spring barley sown in 
autumn was less contaminated with T-2/HT-2 compared 
to spring barley sown in spring. Two potential reasons for 
these differences are a difference in cultivar susceptibility 
and difference in co-occurrence of the susceptible time 
of barley and the infectious time of the Fusarium species 
(Orlando et al., 2010).

Fertilisation

Fertilisation with nitrogen, applied during sowing or tillage 
did have a positive effect on growth and yield of barley and 
wheat grown in Uruguay between 1989-1991 (Baethgen 
et al., 1995). However, fertilisation can also influence 
Fusarium infection and trichothecene production. When 
barley was grown on high nitrogen soil, the percentage of 
FDK, presence of F. graminearum and DON levels were 
higher compared to plants grown on low nitrogen soil 
in greenhouses (Hofer et al., 2016a; Yang et al., 2010). 
In contrast, Pageau et al. (2008) found that nitrogen 
fertilisation had no significant effect on DON content in 
barley in Canada from 2002-2005. No studies could be 
found on the effect of fertilisation on T-2/HT-2 levels.

Lodging

Lodging, the bending of the stalk or the entire plant, is 
mainly influenced by plant characteristics and environmental 
conditions, such as soil type, high nitrogen fertilisation, high 
sowing density, drought and strong winds with heavy rain 
(Nakajima et al., 2008). Two-rowed barley (cv. CI9831) was 
more resistant to lodging than six-rowed barley (Léger), 
in Canada and China from 2001-2002 (Thin et al., 2004). 
Lodging of barley leads to a reduction of the grain yield and 
quality (Baethgen et al., 1995; Caierão, 2006). In addition, 
lodging increases the moisture content of the plant and can 

increase Fusarium infection and mycotoxin concentration 
(Nakajima et al., 2008). In barley, resistance to lodging is 
associated with lower FHB incidence (Thin et al., 2004). 
Higher DON concentrations were found after artificial 
lodging Norwegian barley samples (Tore and Pemilla) from 
1991-1993 (Langseth and Stabbetorp, 1996) and natural 
lodging in Japan from 2002-2006 (Nakajima et al., 2008). 
No studies could be found on the effect of lodging on T-2/
HT-2 levels in barley.

Fungicide use

Fungicides can be used to decrease Fusarium infection 
during cultivation. However, the evidence of effectiveness 
of fungicide use to reduce Fusarium infection in barley is 
conflicting. In addition to type and dose of a fungicide, the 
timing of fungicide application is crucial, because barley is 
only susceptible during a short period of time.

May et al. (2010) concluded that barley seeds (cv. Excel 
and Westeck) treated with fungicides improved yield in 
Canada between 2004-2005. Application of fungicides or 
herbicides during the vegetation state showed either no 
effect or an increase of the presence of Fusarium species in 
Norway in 1996 (Henriksen and Elen, 2005). This increase 
might be the result of inhibitory effects of the fungicide 
on competitor microorganisms. In addition, during the 
vegetation state, no effects of fungicide application on 
DON and T-2/HT-2 concentrations were observed in the 
Czech Republic between 2005-2008 (Malachova et al., 
2010). In some years, the combination of fungicides and 
barley cultivar resulted in higher DON concentrations or 
lower T-2/HT-2 concentrations. In Japan, between 2005-
2006, applying fungicides on two-rowed cleistogamous 
barley (cv. Nishinochikara) in different development stages 
(before anthesis and up to 30 days after anthesis), showed 
that application at the beginning of spent anther extrusion 
(11-12 days after anthesis) was most effective in reducing 
FHB incidence, FHB severity, and percentage of discoloured 
kernels, compared to other fungicide application times 
(Yoshida et al., 2008a). Spraying fungicides on six-rowed 
chasmogamous barley (cv. Shunrai) three days after 
anthesis was more effective compared to later spraying 
dates. Spraying twice gave no additional effect on FHB 
and DON concentration comparing to spraying once three 
days after anthesis in Japan in 2011 (Tateishi et al., 2014).

Biological control

Biological control, i.e. the application of other 
microorganisms to suppress fungal growth or infection, 
is not well examined in barley. Piriformospora indica used 
as a biological control agent in barley increased grain weight 
and decreased root rot (Achatz et al., 2010; Deshmukh 
and Kogel, 2007; Harrach et al., 2013). However, the 
effect of P. indica on FHB or mycotoxin content in barley 
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is not known. In wheat, P. indica reduced FHB and DON 
concentration, and increased grain weight (Rabiey and 
Shaw, 2016). No studies could be found on the effect of 
biological control on T-2/HT-2 levels in barley.

Soil cultivation

Fusarium present on plant debris can survive and 
contaminate the next planted crop. Tillage and ploughing 
bring the contaminated plant debris deeper into the soil 
which can avoid contamination of the next crop. In contrast, 
with minimum tillage and direct drilling, plant residues 
are not buried and are associated with higher infection of 
cereals compared to deep ploughing (Imathiu et al., 2013). 
In Canada between 1999-2002, incidence of FDK was lower 
under conventional tillage (seven or more tillage operations) 
or no tillage compared to minimum tillage (one to six 
operations) in more than six cultivars tested (Fernandez 
et al., 2007b). However, the effectiveness of tillage type 
on FHB differed between susceptible and more resistant 
cultivars. For example, lowest disease levels were reached 
under conventional tillage for susceptible cultivars and 
under zero tillage under more resistant cultivars (Fernandez 
et al., 2007b).

Incidence of F. graminearum and DON content in barley 
was higher under minimum tillage compared to ploughing, 
regardless of previous crop in Switzerland between 2013 
and 2014 (Schöneberg et al., 2016). DON contamination 
in spring barley did not differ significantly between tillage, 
chisel or direct drilling in the Czech Republic between 2007-
2014 (Matušinsky et al., 2016). Orlando et al. (2010) found 
no effect of tillage (ploughing/non-ploughing) on T-2/HT-2 
levels in France in 2006-2008. Although tillage can reduce 
barley infection, Bérubé et al. (2012) concluded that tillage 
(mouldboard plough, spring tillage or direct drilling) had 
minor influence on disease incidence and DON content 
in three barley cultivars compared to weather and crop 
rotation in Canada between 2007-2008.

Crop rotation

With crop rotation, different types of crops will succeed 
each other in the field, to limit recontamination of crops. 
For example, sowing Fusarium prone crops after each other 
increases the chance of recontamination from the soil. In 
barley, incidence of F. graminearum and DON content were 
higher when barley succeeded maize compared to cereal or 
pasture in Switzerland between 2013 and 2014 (Schöneberg 
et al., 2016). DON levels in barley were significantly higher 
when the previous crop was barley compared with dry pea, 
soybean, or red clover in Canada from 2002-2005 (Pageau et 
al., 2008). In barley succeeding barley or wheat, T-2/HT-2 
levels were higher compared to barley succeeding maize, 
beet or other crops in France in 2006-2008 (Orlando et 
al., 2010). Although Fernandez et al. (2007a) did not find 

a difference between FHB in barley succeeding a cereal 
crop, oilseed, pulse or summer fallow, the percentage of 
FDK was lower when the previous crop was summer fallow 
compared to the other crops tested, in Canadian barley 
between 1999-2002.

Harvesting

Although harvest date is difficult to influence due to 
weather conditions, a delayed harvest should be avoided. 
In three barley cultivars (AC Vision, Brucefield, and OAC 
Baxter), a delayed harvest by two weeks was correlated 
with the increase in the incidence of total Fusarium and 
F. sporotrichioides in Canada between 2004-2005 (Xue et al., 
2008). Harvesting two weeks before the expected harvest 
significantly lowered the presence of total Fusarium and 
F. sporotrichioides. A change in harvest date could not be 
statistically correlated to presence of other Fusarium species 
or DON (Xue et al., 2008).

Infected kernels are difficult to be separated from 
healthy kernels because infected kernels might not have 
distinguishable symptoms and infected kernels weigh on 
average only 20% less than healthy kernels, based on a 
Canadian study with six-rowed malting barley (cv. Excel, 
Foster, Robust and Stander) (Tekauz et al., 2000). Techniques 
based on weight to separate FDK at harvest (Salgado et al., 
2011) might therefore not be effective in barley compared to 
wheat where the infected kernel weight decreases up to 50% 
(Tekauz et al., 2000). In Canadian barley harvested in 1994, 
DON accumulated in the outer part of the kernel. Up to 
50% of the initial DON concentration can be lost in hulless 
barley, because the hull is easily removed at harvest (Clear 
et al., 1997). In addition, commercial dehulling strategies 
can remove the outer hull as well (Trenholm et al., 1991). 
No studies could be found on the effect of harvesting on 
T-2/HT-2 levels in barley.

Processing

Although mycotoxins can hardly be removed during 
processing, mycotoxin concentrations can be diluted or 
accumulated during certain processing steps. Presence 
of Fusarium fungi and the use of infected kernels during 
processing can result in a decrease of the quality of the 
end-product. After harvest, several processing steps like 
rolling, extruding, cooking and flaking can be applied for 
feed production (EFSA, 2011). For food consumption, 
malting and brewing are the most common processing 
steps. Hong et al. (2014) report that washing or boiling of 
barley can decrease the DON content by 80%. Although 
very few other studies are available on the effects of barley 
processing, several studies have assessed the quality and 
safety regarding Fusarium infection during the malting and 
brewing process (see also the recent review by Schwarz, 
2017).
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Barley kernels that are smaller or coloured red are suggested 
to be related to gushing. These red kernels are an indication 
of Fusarium infection (Oliveira et al., 2012). Other studies 
also report a relationship between Fusarium infected 
kernels and a decrease of malt quality (Nielsen et al., 
2014; Oliveira et al., 2013), or a negative relation between 
Fusarium resistance and malt quality (Urrea et al., 2005). 
The probability of gushing is reduced by eliminating the red 
kernels from the batch; however, gushing can still occur as 
some infected kernels show no symptoms (Christian et al., 
2011). Primary gushing is caused by elements in the raw 
materials and malt, whereas secondary gushing is caused by 
factors during the production process. Two type of proteins 
have an influence on the extent of gushing and both are the 
result of fungal infection. Hydrophobins are excreted by 
fungi, and non-specific lipid transfer proteins (ns-LTPs) are 
produced by the plant upon fungal infection (Christian et 
al., 2011). Barley samples inoculated with F. graminearum 
and F. poae had increased proteinase, β-glucanase and 
endoxylanase levels compared to the control samples. In 
malt prepared from infected grain, levels of free amino 
nitrogen were elevated and wort β-glucans levels were 
reduced. The quality of the malt and wort is negatively 
affected by these enzymes (Schwarz et al., 2002). DON 
levels slowly increased during the early stages of malting 
and were also elevated during the kilning process when 
the temperature was increased, causing a stress response 
in the fungi (Oliveira et al., 2012).

When barley is contaminated with mycotoxins, the 
contamination can also be seen in the beer produced 
from the barley. For example, when barley is initially 
contaminated with DON, an increase of DON concentration 
is seen during malting followed by a slight decrease during 
brewing. Hazel and Patel (2004) suggest that adding certain 
products to the brewing process (e.g. corn grits, syrups, 
wheat) may contribute to the mycotoxin content in the 
beer. Several studies showed an increase of DON-3G during 
brewing (Kostelanska et al., 2011; Lancova et al., 2008; 
Zachariasova et al., 2012). Levels of HT-2 decreased from 
barley to malt and brewing itself had a minor effect on 
the HT-2 levels (Lancova et al., 2008). Mycotoxins were 
transferred to the beer or the germ bud, which is used in 
the feed industry (Lancova et al., 2008). The technological 
process of beer brewing might affect the mycotoxin 
concentration. For example, a positive correlation between 
the mycotoxin concentration and the alcohol content was 
reported (Kostelanska et al., 2009; Papadopoulou-Bouraoui 
et al., 2004) with non-alcoholic beers showing the lowest 
contamination (Varga et al., 2013).

5. �Comparison of Fusarium infection and 
mycotoxins in barley and wheat

Barley and wheat are both small-grain cereals used for 
animal and human consumption, and Fusarium infection 
results in both a quality and safety loss of these cereals. 
Similarities and differences of Fusarium infection and 
mycotoxins in barley and wheat are summarised in Table 1.

The main similarities between barley and wheat are: (1) the 
influence factors on Fusarium infection in the pre-harvest 
stage, such as cultivar use, fungicide use and soil cultivation; 
and (2) the contribution of T-2/HT-2 to human exposure, 
i.e. both barley and wheat contribute to exposure, and 
current intake levels are above the tolerable daily intake 
in some (sub-)populations.

The main differences between barley and wheat in terms 
of Fusarium infection and mycotoxin accumulation are 
summarised as following:
1. Barley and wheat are anatomically different, which 

results in differences in susceptibility of the plants to 
Fusarium infection and disease severity. Barley is more 
resistant to the spread of the fungal infection within the 
plant, whereas in wheat, a fast spread of the infection 
occurs. Therefore, avoidance of initial infection is more 
important in wheat than in barley.

2. Determination of infection by visual symptoms is 
different for barley and wheat. In barley, Fusarium 
infection hardly shows any symptoms or they can be 
confused with other diseases, whereas in wheat Fusarium 
infection can be apparent in both the field (FHB) and 
in loose kernels (FDK). This leads to misestimating the 
presence of Fusarium spp. in barley. Therefore, the use 
of visual inspection to decide to take additional measures 
to prevent further spread of the disease, as is done in 
practice by wheat farmers, cannot be done by barley 
farmers. Also, techniques to separate FDK at harvest 
might not be as effective in barley as in wheat, because 
in barley FDK are more difficult to distinguish.

3. The effective moment (days after anthesis) of fungicide 
application in barley and wheat is different. Also, in 
wheat, there is an additional effect of multiple fungicide 
applications in reducing FHB and DON concentration, 
whereas in barley, no additional effect of multiple 
application is seen. In this regards, data on effective 
fungicide application in wheat, cannot be extrapolated 
to barley.

4. Barley and wheat are used for different end-products, 
which results into differences in mitigation targets and 
their timing: limiting fungal presence and growth in 
barley during post-harvest processing to improve product 
quality, and minimising mycotoxin contamination in 
wheat during pre-harvest to ensure the product safety.
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Table 1. Comparison of Fusarium infection and mycotoxins between barley and wheat.1

Section Barley Wheat Reference

Anatomy Chasmogamous (open-flowering) or cleistogamous 
(closed-flowering)

Chasmogamous (open-flowering) Briggs, 1978; Heta and Hiura, 1963; 
Thomason and Griffey, 2009; Vivar 
et al.,1997

Florets close together (six-rowed) or apart (two-rowed) Florets close together Langevin et al., 2004
Fusarium 
infection

Type I resistance more important Type II resistance more important Bai and Shaner, 2004; Jansen et al., 
2005

Direct floret-floret (six-rowed) contamination or limited 
floret-floret (two-rowed)

Direct floret-floret contamination Langevin et al., 2004

Most susceptible at anthesis (chasmogamous) or 10 
days after anthesis (cleistogamous)

Most susceptible at anthesis Oliveira et al., 2012; Yoshida et al., 
2007, 2012

Neighbouring spikelets are free from infection Neighbouring spikelets are often all 
infected

Boddu et al., 2007; Tekauz et al., 
2000

Symptoms Affected kernels are scattered throughout the head Entire spikelet and neighbouring spikelets 
are affected

Goswami and Kistler, 2004; Tekauz 
et al., 2000

Discoloured kernels (tan, orange, brown, pink or red) FDK smaller, red or white and shrivelled Boddu et al., 2006; Canadian Grain 
Commission, 2016; Goswami and 
Kistler, 2004; Tekauz et al., 1997

FDK weight decrease 20% FDK weight decrease 50% Tekauz et al., 2000
Hull can cover infection symptoms No hull Abramson et al., 2004
Symptoms can be confused with other diseases Clear symptoms for Fusarium infection Bérubé et al., 2012; Clear et al., 1996

Mycotoxins Contradicting results if trichothecenes act as virulence 
factor

Trichothecenes act as virulence factor Bai and Shaner, 2004; Boddu et al. 
2007; Jansen et al., 2005; Langevin 
et al. 2004; Maier et al., 2006; Shah 
et al., 2017

Activation of plant defence system Idem Berthiller et al., 2013;  
Gardiner et al., 2010

Plant defence regardless of mycotoxins Plant defence inhibited by mycotoxins Jansen et al., 2005
Modification of mycotoxins by barley Idem Berthiller et al., 2013; Gardiner et al., 

2010; Meng-Reiterer et al., 2015
Occurrence levels DON lower Occurrence levels DON higher EFSA, 2013; 2017b; Varga et al., 

2013 
Occurrence levels T-2/HT-2 higher Occurrence levels T-2/HT-2 lower EFSA, 2011; 2017a
Contribution to DON exposure limited High contribution to DON exposure EFSA, 2013; 2017b
Contribution to T-2/HT-2 exposure minor Contribution to T-2/HT-2 exposure EFSA, 2011; 2017a

Correlation 
between 
symptoms

Contradicting results on correlation between symptoms (Limited) correlation between symptoms Abramson et al., 1998; Berger et al., 
2014; Bérubé et al., 2012; Chrpová 
et al., 2011; Fernandez et al., 2007a; 
Legzdina and Buerstmayr, 2004; 
Nesvadba et al., 2006; Paul et al., 
2005; 2006; Salas et al., 1999; 
Schöneberg et al., 2016; Tekauz et 
al., 2000; Xue et al., 2006 

Contradicting results on correlation between disease 
severity and presence of Fusarium spp.

- Salas et al., 1999

Contradicting results on correlation between presence 
of DON and disease severity

Significant positive correlation between 
presence of DON and disease severity

Berger et al., 2014; Buerstmayr et al., 
2004; Chrpová et al., 2011; Legzdina 
and Buerstmayr, 2004; Nesvadba et 
al., 2006; Paul et al., 2006; Salas et 
al., 1999; Thin et al., 2004

ht
tp

://
w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/W
M

J2
01

7.
22

55
 -

 M
on

da
y,

 F
eb

ru
ar

y 
26

, 2
01

8 
4:

45
:4

9 
A

M
 -

 I
P 

A
dd

re
ss

:1
97

.1
56

.8
9.

22
8 



� Fusarium infection and trichothecenes in barley

World Mycotoxin Journal 11 (1)� 41

Table 1. Continued.

Section Barley Wheat Reference

Agronomy 
and 
management

Presence of DON in barley was positively correlated 
with temperature and precipitation in April

Presence of DON correlated to 
temperature in April, May, June and 
September, rainy days during June, and 
relative humidity during May and June 

Van der Fels-Klerx et al., 2012

Susceptibility differences between barley varieties Idem Bai and Shaner, 2004; Berger et al., 
2014; Bérubé et al., 2012; Chrpová 
et al., 2011; Langevin et al., 2004; 
Legzdina and Buerstmayr, 2004; 
Malachova et al., 2010; Xue, 2013; 
Xue et al., 2006

Spring and winter barley differ in sowing time, cultivar 
used, and susceptibility to Fusarium infection

- Barrier-Guillot, 2008; Fournier, 2009; 
Orlando et al., 2010; Schöneberg et 
al., 2016; Slaiding, 2008; 2009

Possible increase of FDK, fungal presence and DON 
concentration by high nitrogen fertilisation

Inconsistent effects of fertilisation on FHB 
and mycotoxin levels

Hofer et al., 2016a; Pageau et al., 
2008; Yang et al., 2010; Yoshida et 
al., 2008b

Lodging increases Fusarium infection and mycotoxin 
concentration

Idem Baethgen et al., 1995; Caierão, 2006; 
Nakajima et al., 2008; Thin et al., 
2004

Application of fungicides was most effective in reducing 
FHB incidence, FHB severity and percentage of 
discoloured kernels 3 days (chasmogamous barley) 
or 11-12 (cleistogamous barley) days after anthesi

Application of fungicides 4 days after 
anthesis was most effective to reduce 
FHB

Tateishi et al., 2014; Yoshida et al., 
2008a

Spraying fungicides twice gave no additional effect on 
FHB and DON concentration

Spraying twice had an additional 
effect on reduction of FHB and DON 
concentrations in wheat

Tateishi et al., 2014

Tillage can reduce Fusarium infection in barley Idem Bérubé et al., 2012; Fernandez et 
al., 2007b; Matušinsky et al., 2016; 
Orlando et al., 2010; Schöneberg et 
al., 2016; Wegulo, 2012; Wegulo et 
al., 2015

Crop rotation can reduce Fusarium infection in barley Idem Wegulo, 2012; Wegulo et al., 2015
Biological control leads to increase in grain weight, 

effect on FHB and mycotoxins unknown
Biological control leads to increase in 

grain weight and decrease FHB and 
mycotoxins

Achatz et al., 2010; Deshmukh and 
Kogel, 2007; Harrach et al., 2013; 
Rabiey and Shaw, 2016

Harvesting Delayed harvest increases presence fungus, not DON Idem Xue et al., 2004, 2008
Separation of FDK based on weight probably not 

effective
Separation of FDK based on weight at 

harvest is effective
Tekauz et al., 2000

Loss of DON due to loss of hull in hulless barley; 
effective commercial dehulling

Effective commercial dehulling Clear et al., 1997; Trenholm et al., 
1991

Processing Main food processes are malting and brewing Main food processes are milling and 
baking

-

Quality issues due to presence fungus Presence fungus not an issue Nielsen et al., 2014; Oliveira et al., 
2013

Quality issues due to infected kernels Contradicting results on quality issues due 
to infected kernels

Dexter et al., 1996; Horvat et al., 
2015; Kreuzberger et al., 2015; 
Nielsen et al., 2014; Oliveira et al., 
2012, 2013; Prange et al., 2005

Transfer of mycotoxins through processing steps Idem Kaushik, 2015; Nielsen et al., 2014; 
Oliveira et al., 2013; Urrea et al., 2005

 1 DON = deoxynivalenol; FDK = Fusarium damaged kernels; FHB = Fusarium Head Blight; HT-2 = HT-2 toxin; T-2 = T-2 toxin.
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6. Conclusions

This is the first study providing an extensive literature 
review on the influence factors for Fusarium infection and 
mycotoxin formation in barley, including weather, pre-
harvest and post-harvest factors. It has also comprehensively 
compared these factors and their underlying mechanisms 
between barley and wheat.

The unique anatomy of barley leads to differences 
regarding its susceptibility and susceptible infection time 
among cultivars. Fusarium infection in barley is difficult 
to recognise in the field and mycotoxin levels cannot be 
estimated based on the symptoms. Overall, these factors 
make it difficult to establish the real severity of Fusarium 
infection in barley. Weather influences Fusarium infection 
and mycotoxin production. Reduction of Fusarium 
infection and mycotoxin contamination in barley can 
be achieved by several pre-harvest measures. Although 
DON concentrations in barley do not contribute much to 
exposure of human by consumption of barley related food 
products, barley in beer can be a contributor to T-2/HT-2 
exposure. In addition, the presence of Fusarium spp. leads 
to serious quality issues in beer.

Most pre-harvest measures to mitigate initial Fusarium 
infection are the same for barley and wheat, but due to 
anatomical differences, some measures (e.g. fungicide 
application) have a different effect on Fusarium infection. 
Therefore, in future research (e.g. on biological control) care 
should be taken to use data of wheat to draw conclusions 
for barley.
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