ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281972240

Mycotoxins in food for direct consumption in Chile

Confere	nce Paper · June 2010	
CITATIONS 0	5	READS 52
4 author	rs, including:	
	Lorena Delgado Instituto de Salud Pública - Chile 16 PUBLICATIONS 7 CITATIONS SEE PROFILE	

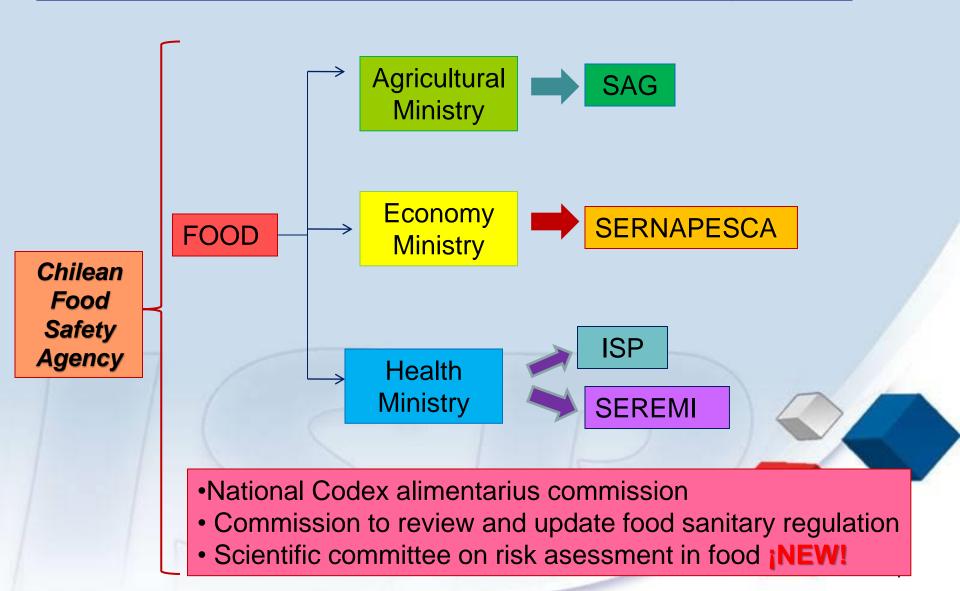
All content following this page was uploaded by Lorena Delgado on 21 September 2015.

MYCOTOXINS IN FOOD FOR DIRECT CONSUMPTION IN CHILE

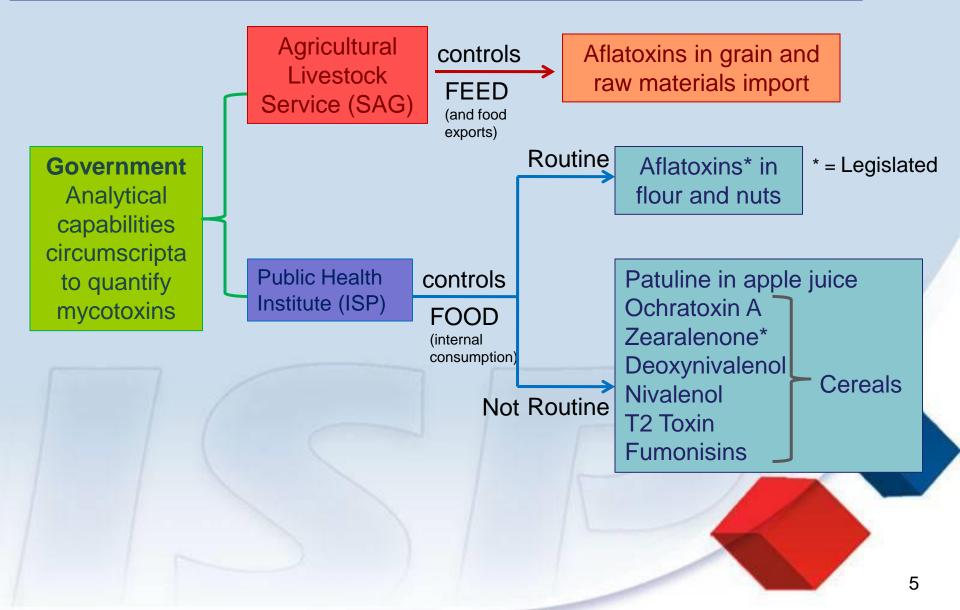
Lorena Delgado, Luis Roa, Emilia Raymond, Orialis Villarroel

Environmental Health Department, Public Health Institute of Chile

June 29th 2010

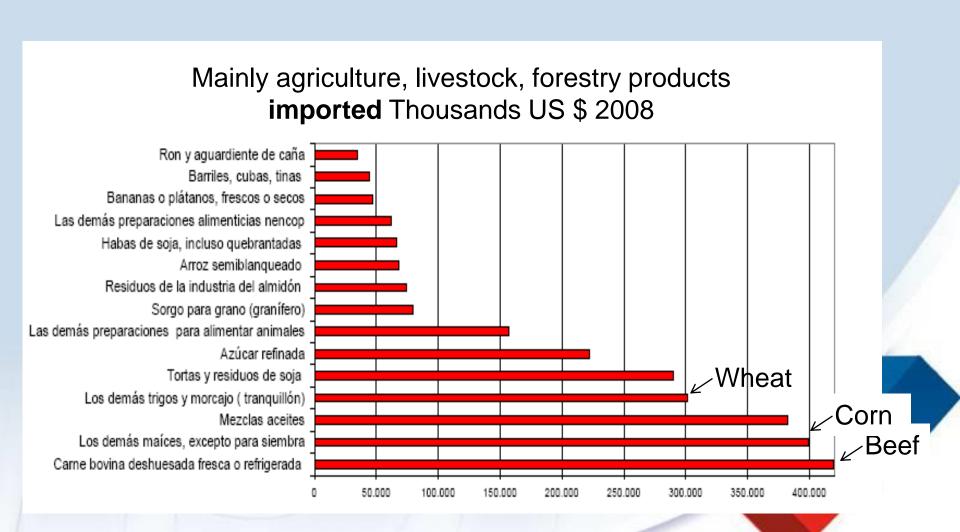

INTRODUCTION

- 1. Chilean conditions in food control and inspection of mycotoxins
- 2. Chilean import situation of crops
- 3. <u>Limit and regulation for mycotoxins in food and feed in</u>
 <u>Chile</u>

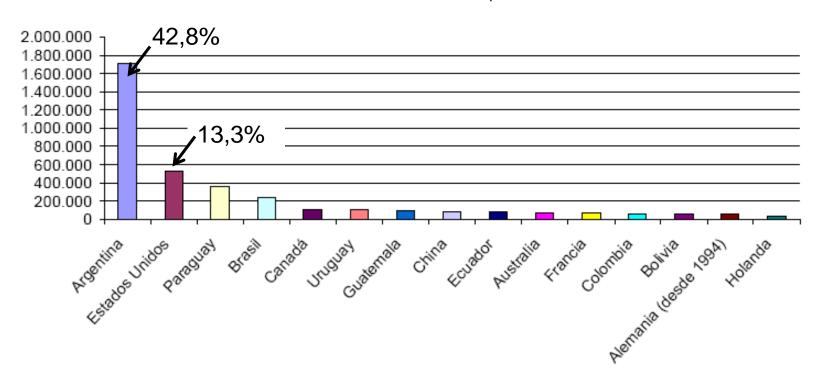

1. Chilean conditions in food control and inspection of mycotoxins

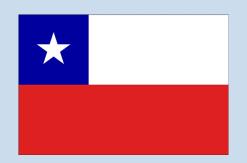

1. Chilean conditions in food control and inspection of mycotoxins

1. Chilean conditions in food control and inspection of mycotoxins



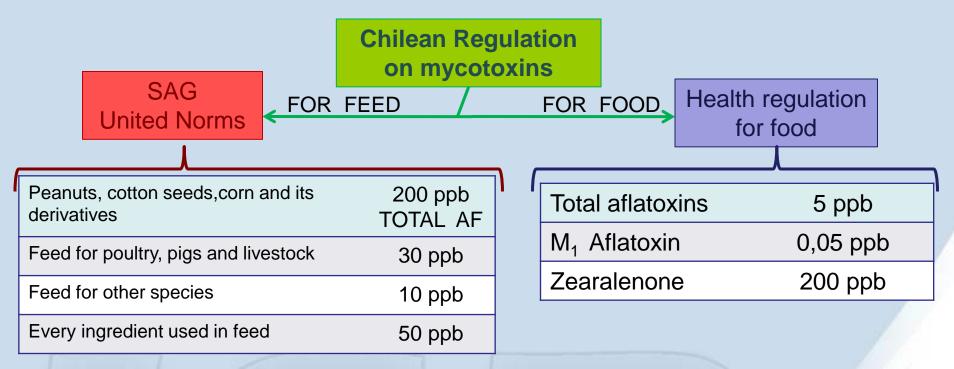
2. Chilean import situation of crops


2. Chilean import situation of crops



2. Chilean import situation of crops

Imports of Agriculture, livestock, forestry products by country of destination
Thousands US \$ 2008



3. <u>Limit and regulation for mycotoxins in</u> <u>food and feed in Chile</u>

3. Limit and regulation for mycotoxins in food and feed in Chile

In Chile, legislation about limits for mycotoxins in feed or food does not indicate the analytical methodologies accepted.

As for mycotoxicosis, the Chilean standard about veterinary inspection of cattle establishes the rejection of cattle in the presence of acute or chronic mycotoxicosis, both in the channel as in the viscera of the animal, clinic or morphologically detected in the post-mortem inspection

Aim:

Determine the presence and quantify the quantity of different mycotoxins:

Aflatoxins

Patulin

Zearalenone

Ochratoxin A

Nivalenol

Deoxynivalenol

T2 toxin

in food for direct consumption in Chile.

MATERIALS AND METHODS

Mycotoxins project:

Study of food residues and contaminants Public Health Institute of Chile

- -During 2008 was performed by the Institute of Public Health a pilot study about determination of veterinary drug residues, pesticides residues and **mycotoxins in food**.
- During 2009 this study continued, incorporating the analysis of heavy metals and nutritional labeling.

Mycotoxins samples 2008 -2009

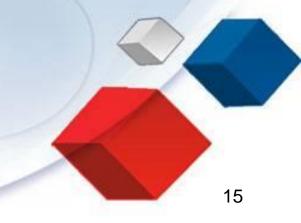
156, collected from supermakets of the central zone of Chile

Matrix	n	Mycotoxins
Nuts fruits	47	Aflatoxins, OTA
Fruit Juices	40	Patulin
Maize, wheat and rice products	69	AF, DON, NIV, OTA, T2, ZEN

Nuts fruits: Almonds, Figs, peanuts, japanese tipe peanuts, Hazel nuts, raisins and pistachios,

Fruits Juices: Apple, cramberries, plum, peach, strawberries, kiwi, blueberries, grape.

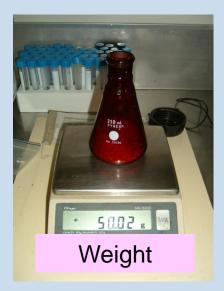
Maize, wheat and rice products: Flour, cornflakes, breakfast cereals.

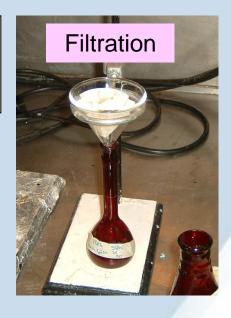


Mycotoxins nº Analysis 2008 -2009

Mycotoxins	Nº analysis	Extraction methods
Aflatoxins	79	Mycosep 224
Patulin	40	Mycospep 228
Deoxinivalenol	24	Multisep 227
Nivalenol	24	
T2	34	
Zearalenone	37	Inmunoaffinity
Ochratoxin A	88	columns

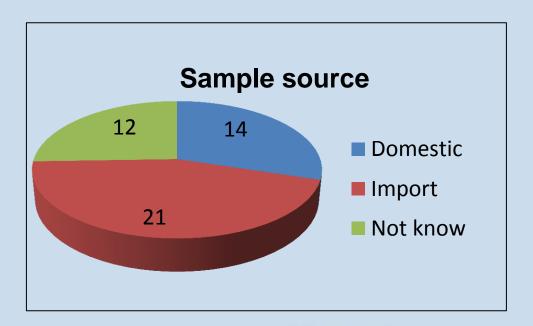
Quantification methods HPLC LC/MSMS

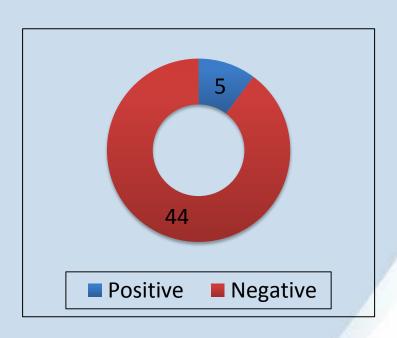



Most of the analytical method used were the one proposed by the Japanese expert, Dr. Hisashi Takeda and the ones showed at Japanese training curse «Mycotoxins inspection in food». Both activities were according to the «Food safety enforcement program» project between Chile-Japan 2007-2009

(Blender or shaker)

DILUTION (PBS) for IAC

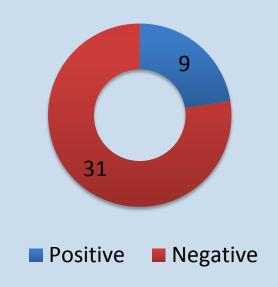




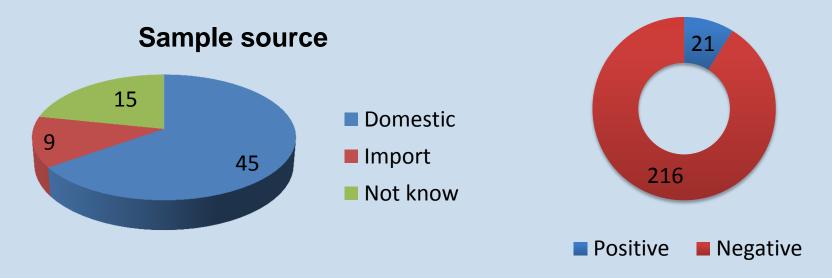
RESULTS

- Dried Fruits
- Fruits Juices
- Maize, rice and weath and its derivatives
- * Summary

Results: Dried Fruits

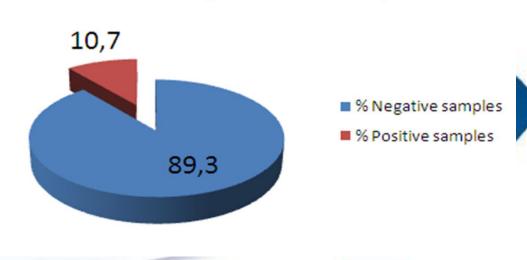

Mycotoxin	+(Total)	Matrix	Range
Ochratoxin A	4(19)	Raisins	0,04-3,4 ppb
Aflatoxins	1(3)	Japanese type peanuts	33,0 ppb

Results: Fruit Juices


Sample source

Mycotoxin	+(Total)	Matrix	Range
Patulin	9(13)	Apple juice	6,4 -175,6 ppb

Results: Maize, rice and wheat and its derivatives



Mycotoxin	+(Total)	Matrix	Range
Ochratoxin A	3(14)	Rice	0,2 – 0,7 ppb
	3(10)	Wheat flour	0,02 – 0,3 ppb
	9(30)	Breakfast cereals	0,2 – 0,7 ppb
	1(1)	Wheat bran	8,1 ppb
Zearalenone	1(9)	Wheat flour	4,8 ppb
	1(3)	Maize	86,1 ppb
	2(6)	Wheat	11,9 – 13,1 ppb
Deoxynivalenol	1(10)	Breakfast cereals	94,0 ppb

Results: Summary

Mycotoxin	Positive samples	Matrix afected	Maximum value founded
Total aflatoxins	1	Japanese type peanut	33 ppb
Patulin	9	Apple juice	175 ppb
Deoxynivalenol	1	Breakfast cereal	94 ppb
Zearalenone	4	Maize	86 ppb
Ochratoxin A	20	Wheat bran	8 ppb

Results of mycotoxins analysis

CONCLUSIONS

•From the total of analysis performed (326), 35 samples were positive, and from them, 3 were above the international limits established by Codex Alimentarius. Some of these mycotoxins who presents values superior to the allowed by this regulation, don't have allowed limits in the Chilean legislation, this reflects the need to consider include on it.

*Further analysis must be performed to determinate if the trend observed about the presence of mycotoxins in food of direct consumption in Chile is confirmed with a larger number of samples or in a specific matrix.

REFERENCES

- Kumagai et.al. *Aflatoxin and Ochratoxin A contamination of retail food and intake of these mycotoxins in Japan*. Food Additives and Contaminants Vol 25 nº9, September 2008, 1101-1106
- 49.2.19A Method "AOAC Official Method 994.08 Aflatoxins in Corn, Almonds, Brazil nuts, Peanuts, and Pistachio nuts" Multifunctional Column (Mycosep) Method.
- A rapid multiresidual determination of type A and type B trichothecenes in wheat flour by HPLC-ESI-MS. Food Additives and Contaminants, March 2005, 22(3): 251-258
- Japanese Official Analytical Method for Patulin (Notification № 369, Ministry of Health, Labour and Welfare, 2003)

Thank you very much for listening ¿Questions?

- Muchas gracias