Partenariat pour la lutte contre l'aflatoxine en Afrique Parceria para o Controle da Aflatoxina em África الشراكة من أجل مكافحة الافلاتوكسين في أفريقيا

Economic Impact of Aflatoxins to Africa: The case of Malawi, Tanzania and Uganda

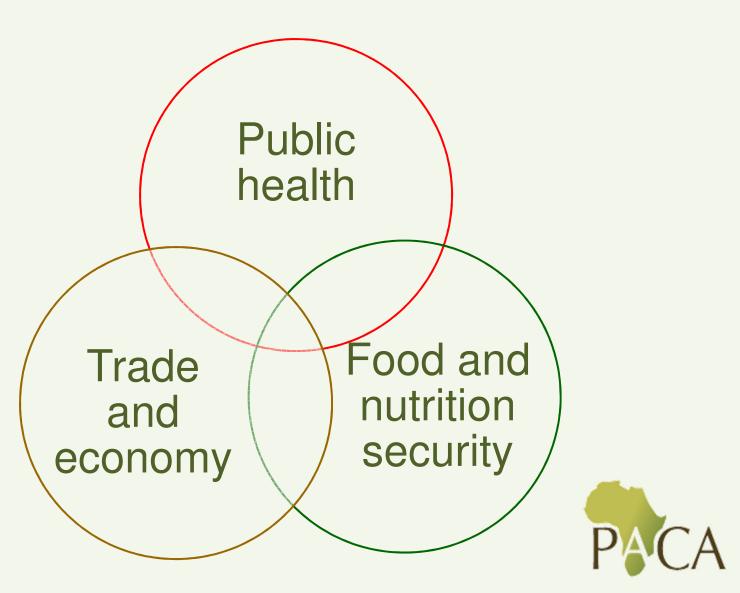
First Africa Symposium of Mycotoxicology

PACA Secretariat

May 26-28, 2015

Livingstone, Zambia

The Study Teams:


Martin Kimanya, Emmanuel Mpolya, Bendantunguka Tiisekwa,

A.N Kaaya, A. Atukwase, G.A Tumuhimbise A. Tatwangire, W. Asiimwe;

M. Alexander R. Phiri, Lawrence Mapemba and Henry Kankwamba

Aflatoxin is a developmental challenge to Africa, posing triple menace

Factors Contributing to the Aflatoxin Challenge in Africa

- ☐ Conducive climatic conditions
- ☐ Traditional crop production and post-harvest practices
- ☐ Food insecurity and limited dietary diversity
- Low levels of awareness about the problem and options
- Weak institutional capacity: policy, regulations, putting research into use
- ☐ Complexity of the problem, which makes targeting interventions difficult

This situation is aggravated by poorly coordinated responses.

PACA Comprehensive Program

Food Security | Trade | Health

Policy, standards and regulations

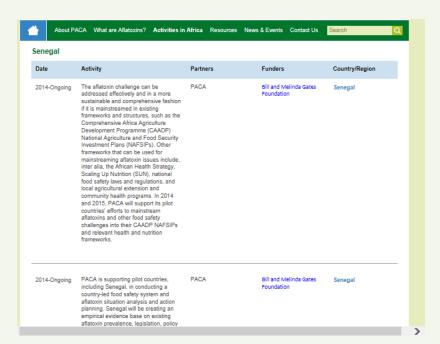
Testing (sampling; diagnostics)

Pre-harvest including beneficial fungi

Post-harvest drying, storage, handling

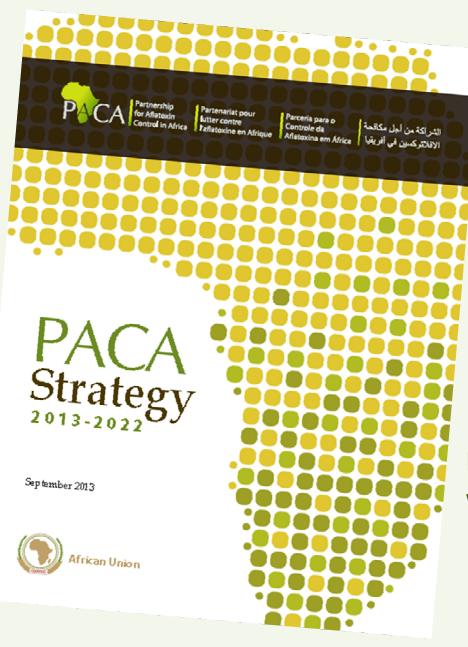
Market
development:
structured
demand,
alternative uses

Consumption


Training, communication, and capacity strengthening

Economic Assessments


Food Security Assessments Health Assessments


Database of Aflatoxin Activities in Africa:

<u>Interactive map on the PACA</u> website:

Disclaimer: The Database only includes activities that have been submitted to the Secretariat.

PACA's Vision: An Africa Free From the harmful effects of aflatoxin

PACA's Mission:
To support agricultural development, safeguard consumer health and facilitate trade by catalyzing, coordinating and increasing effective aflatoxin control along agricultural value chains in Africa

Read at: www.aflatoxinpartnership.org

PACA Secretariat Roles

Long-Term Role

Work with RECs and other stakeholders to convene continental, inter-regional, regional, and country meetings

Aggregate evidence, gather knowledge, and disseminate information

Mobilize resources and fund projects aligned with country plan approach

Provide catalytic grants: e.g. testing equipment to enhance gov't capacity

Short-Term Role

Technical Assistance

Provide TA in the short-term (3 years)

PACA Secretariat Activities

- Continental:
 - Mainstreaming into continental frameworks
 - Convenings
 - Knowldege management functions
- Regional:
 - Regional convenings
 - Harmonization
 - Support country plan approach
- Country-level:
 - Country plan preparation, execution and progress monitoring

Phased Approach to Scale Country Level Activities

"If fail to plan, you plan to fail"

Implementation approach: from piloting to scaling

Pilot countries:

Gambia, Malawi, Nigeria, Senegal, Tanzania, Uganda

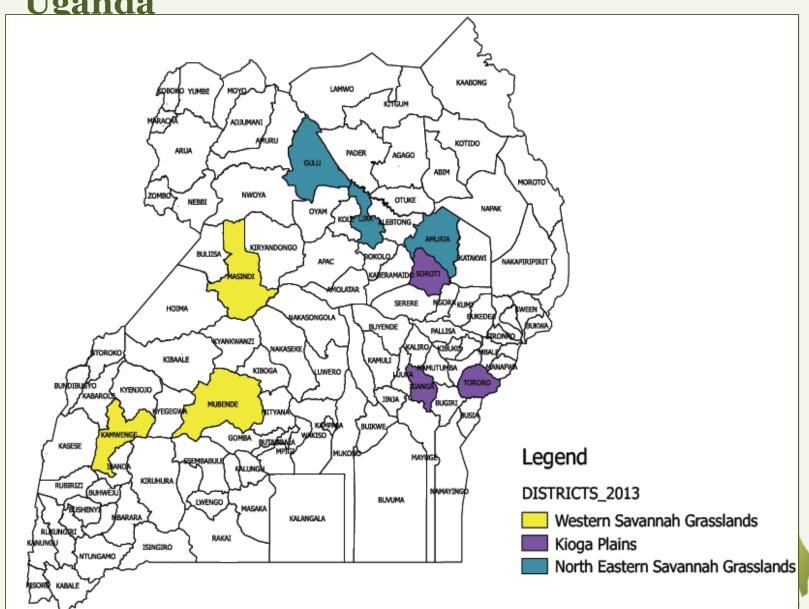
Maps are illustrative

PACA initiated situational and economic impact analysis in six focus countries in 2014/15

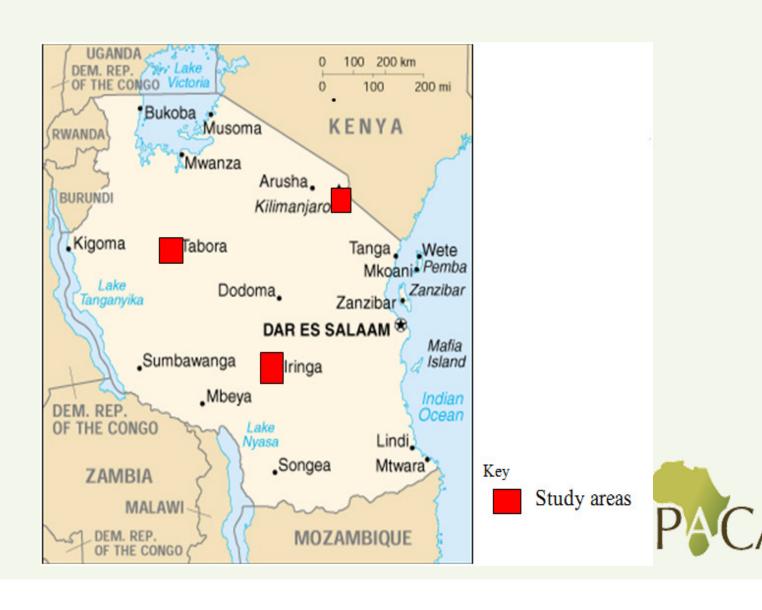
Objectives of situational analyses:

- 1. Review the country's food safety systems and effects of aflatoxin along the main agricultural value chains
- 2. Determine the cost of aflatoxin to health, trade and agriculture (economic impact)
- 3. Formulate evidence based recommendations
- 4. Inform the review of the National Agriculture and Food Security Investment Plans (NAFSIPs), and the development of the Africa led Aflatoxin Information Management System (AfricaAIMS)

Methodology: 6 phases


- 1. Identify key crops of concern
 - Maize, groundnuts, sorghum/rice
- 2. Determine prevalence and distribution of aflatoxin
- 3. Characterize risks of aflatoxin contamination and exposure along priority value chains
- 4. Estimate economic impact due to aflatoxin contamination
- 5. Identify and prioritize opportunities for aflatoxin control
- 6. Conduct stakeholder meeting to communicate and validate findings

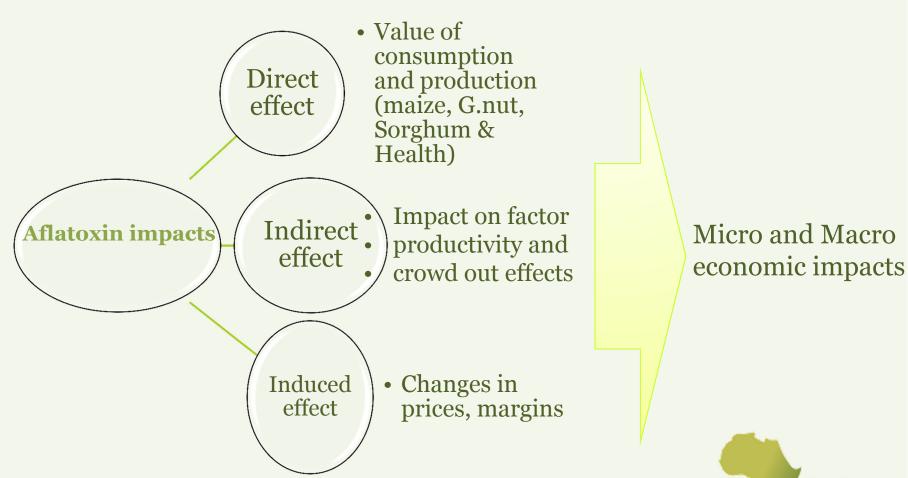
Data collection techniques


- 1. Desk literature review
- 2. Key informant interviews
- 3. Focus Group Discussions
- 4. Questionnaires (Farmers)
- 5. Sample collection and Laboratory analysis (Total Aflatoxins)
- 6. Use of Models (economic impact analysis)

Agro-ecological zones and districts targeted in Uganda

Regions from which aflatoxin exposure data were obtained, Tanzania

Economic assessment for TZ:


Cost-of-illness (COI) approach

- Selected a healthy Tanzanian population for exposure
- Estimated exposure to aflatoxin using bio-marker based exposure data
- Estimated the population risk to HCC
- Estimated the case-fatality ratio
- Used DALYs for estimation of productivity losses
- Estimated various costs of illness based on a Korean study approach
- Estimated the total economic impact

Economic assessment for UG: Aflatoxin transmission mechanism + CGE

model

Model used for economic impact assessment, Uganda:

- Aflatoxin Customised Recursive Dynamic Computable General Equilibrium (CGE)
- i) Market frictions: Sadoulet and de Janvry (1995) & Devarajan et al., (1997)
- Production: Aflatoxin contaminated agricultural commodities are produced by local firms following a CES production function.

$$Z_{G} = \left(\sum_{i} \delta_{i} X_{i}^{-\rho}\right)^{-1/\rho}$$

$$G \in \left\{z_{afxn}, z_{0}\right\}$$

$$X_{K} = Z\delta_{K}^{1/(\rho+1)} \left[\frac{P_{K}}{P_{ave}} \right]^{-1/(\rho+1)}$$

$$i \in \{L_{sick}, L_{ok}, CAP\}$$

Sale of aflatoxin commodities: The producer's choice between the domestic and export market is captured by the Constant Elasticity of Transformation (CET).

$$Afxn_Agricprod = \overline{A} \left[\delta \bullet E_{af}^{\Omega} + (1 - \delta) \bullet DS_{af}^{\Omega} \right]^{\frac{1}{\Omega}}$$

$$\Omega = 1/(\rho - 1); \sim 1 < \rho < +\infty$$

 Households maximize utility by maximizing revenue, minimizing cost as well as optimal allocation of resources

$$X3 _SH(c) = X3SUB(c) + S3LUX(c) * V3LUX _c / P3 _S(c)$$

 Households consume both imported and domestic commodities whose substitutability is captured by constant elasticity of substitution (CES).

The Malawi study:

- Supplemented and enriched the MAPAC assessments
- Used CGE model

Occurrence of aflatoxins in maize, groundnuts and rice, 2014/15, Tanzania

Food	Regions	Range of prevalence (%)	Range of highest contamin. (ppb)	Range of prevalence above regulatory limit (%)
Maize	Manyara, Morogoro, Iringa, Mbeya, Rukwa, Kilimanjaro, Tabora, Shinyanga and Ruvuma	35 - 95	8 - 1081	2 -85
Groundnuts	Manyara, Ruvuma, Mtwara, Dodoma, Shinyanga	NA	31 -123	18 - 20
Rice	Mbeya, Shinyanga and Morogoro	6 - 70	0.01 – 3.83	PACA

Occurrence of aflatoxin in maize, 2014/15, Uganda

Agro- ecolological	District	Aflatoxii levels (p		% samples > 10 ppb		
zone		Range	Mean			
Western Savannah Grasslands	Mubende	0-255	71.5	45		
	Kamwenge	3-110	25.4	50		
	Masindi	0-550	42.6	25		
Kioga plains	Iganga	0-680	45.8	65		
	Soroti	0-3300	388	60		
	Tororo	0-86	11.3	20		

Occurrence of aflatoxin in groundnuts, 2014/15, Uganda

Agro- Ecological	District	Aflatoxin lo	% samples >	
zone		Range	Mean	10 ppb
Western Savannah Grasslands	Mubende	0 - 15	1.5	10
	Kamwenge	0-11	1.9	10
	Masindi	0-179	16.1	10
Kioga plains	Iganga	0-850	78.7	30
	Soroti	0-141	18.9	20
	Tororo	0-12	1.7	10
North Eastern Savannah Grasslands	Gulu	0-4	1.0	O
	Amuria	0-13	3.7	10
	Lira	0-22	3.0	10

Occurrence of aflatoxin in sorghum, 2014/15, Uganda

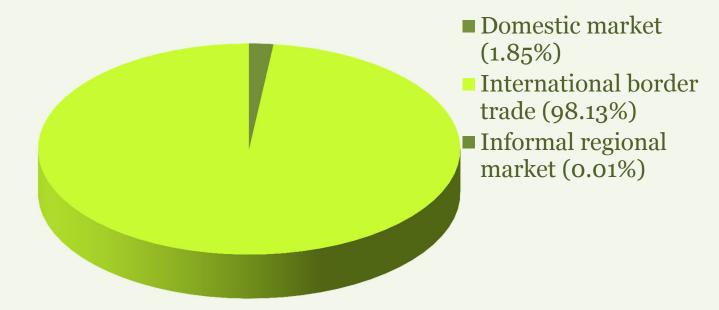
Agro- Ecological	District	Aflatoxin lev	% samples > 10 ppb	
zone		Range	Mean	r 10 pps
Kioga plains	Soroti	97-260	170.1	100
	Tororo	0-240	55.1	65
North Eastern Savannah Grasslands	Amuria	25-514	11.5	100
	Gulu	0-121	66.6	95
	Lira	26-240	102.7	100

Economic impact of aflatoxins, Tanzania

- Based on monetization of the DALYs (economic loss due to mortality and morbidity)
- The total economic loss due to aflatoxin exposure in Tanzania has a median of US\$332,500,000; ranging between US\$ 92,890,000 and 757,900,000
- Only the amount of money that would be saved from DALYs, if efforts to reduce aflatoxin exposures were exercised, is captured
- Further work ongoing to analyze the trade and food security impacts based on the current aflatoxin standards of 10/15 ppb of TZ and other relevant info

Key findings for Uganda

Status of the food safety situation:


- No single agency is responsible for food safety
- Multi-agency system scattered in different ministries and/or departments
- Personnel, policies, infrastructure are rather fragmented between several ministries, departments and agencies

Key highlights on impacts of aflatoxin contaminations in foods (FY 2013/2014), Uganda

Trade & transport margins (markup) impacts		Export impacts		Impact on health sector		Impact on household welfare			Impact on production, employment and wages				
	%	US\$ mn		%	US\$ mn		%	US\$ mn		%	US\$ mn		%
Health sales (intermediate)	-0.02	-0.023	Nominal exports	-0.62	-37.56	Real household Demand domestic health services	0.25		Composite Price Index	-0.15		Economic growth	-0.26
Health sales (households)	0.12	0.47	Real export	-0.47		Real household Demand imported health services	2.83		Disposable household income	-0.33	-79.3	Production efficiency	-0.35
Health sales (government)	0.38	1.38	Export price			health services	0.61		household consumption	-0.33	-59.1	Employment demand	
Aggregate health services	0.48		Exchange rate depreciation	0.1		Real consumption of domestic health services by households	0.25		Real household consumption	-0.18		Real wage	0.09
Export trade margins (grain seeds)	-1.35	-1.34	Terms of trade (TOT)	-0.15		Real consumption of imported health services by households	2.83		Household savings	-3.44	-76.54		
Export transport margins (grain seeds)	-1.35	-0.18	Agric exports	-1.09	-16.34	Health services price	0.85		seed consumption		2.3		
			Mining sector export	0.02	0.013	Government savings		-0.3	Real consumption of domestic Grain seeds by households	-0.27			
						Government expenditure on health services	0.87	0.91		-2.7			

Results of Malawi Aflatoxin Impact Assessment

Net effect of aflatoxin contamination on Malawian economy

- Export bans imposed by importing countries restrict Malawi's exports resulting in general loss of foreign exchange.
- Border price and domestic price differences act like an implicit form of taxation on the economy, resulting in foreign exchange losses

Priority areas identified for intervention strategies

- 1. Production, postharvest handling & storage
- 2. Processing and marketing
- 3. Public health management
- 4. Advocacy & awareness creation
- 5. Policy and regulation

Conclusions

- Affected products are staples
- -High levels of contamination
- Low level of awareness among consumers, traders and processors
- -Inadequate regulation and enforcement
- Substantial socio-economic impact of aflatoxins in Malawi, Tanzania and Uganda
- There is moral reason and economic and social imperative to mitigate the aflatoxin challenge

PACA Vision: An Africa Free From the Harmful Effects of Aflatoxin

Thank you!

